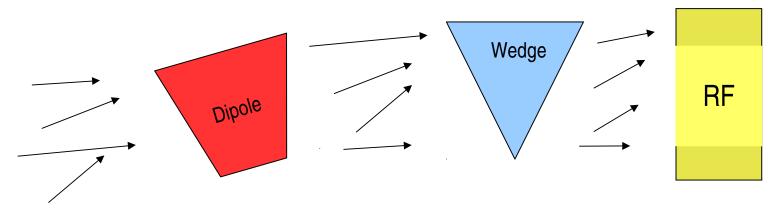
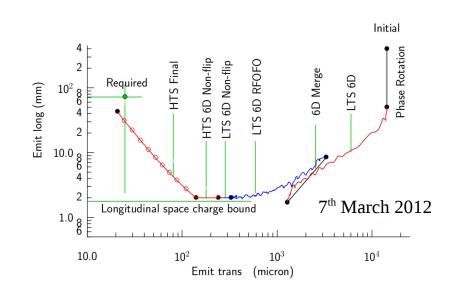
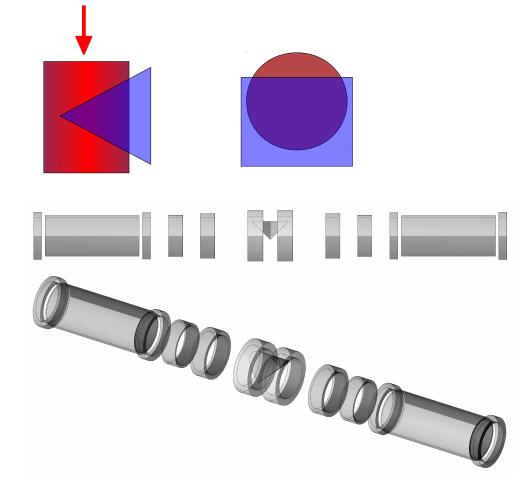

Wedge Absorber in MICE

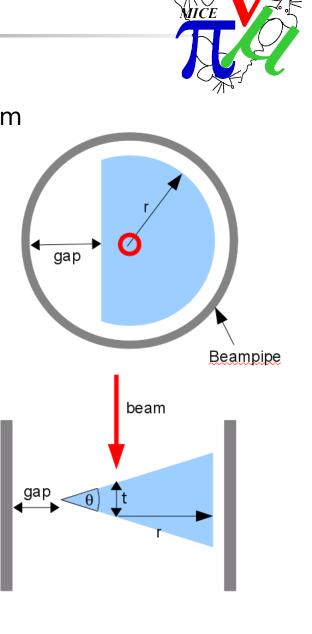


Chris Rogers, Pavel Snopok, Linda Coney, Andreas Jansson ASTeC, Rutherford Appleton Laboratory



- MICE will demonstrate transverse cooling
 - Key technology for Neutrino Factory
 - Key technology for Muon Collider
- Muon collider relies also on emittance exchange
 - Muons acquire a position-energy correlation from dipole
 - Muons traverse a wedge shaped absorber where the correlation is removed
 - Energy spread transferred to position spread
 - Exchange of longitudinal emittance to transverse emittance
 - Key technology for Muon Collider


Muon Collider Cooling


- WICE State
- Any Muon Collider relies heavily on emittance exchange
 - Lower longitudinal phase space means higher frequency RF
 - Merge of microbunches to increase luminosity
- Implementation in MICE
 - Effect of dipole is well known
 - Effect of RF is well known
 - (Engineering with an absorber is demonstrated by MICE Step V)
 - Demo of a beam traversing a wedge has not been done
- Can we put a wedge-shaped absorber in MICE and see longitudinal emittance reduction?
- Topical: What if we can't afford LiH

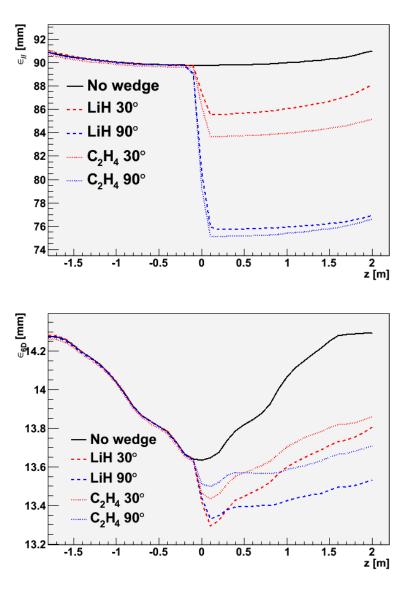
Wedge Geometry

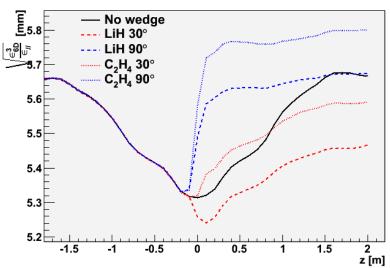
Geometry of wedge in MICE Wedge is an intersection of a cylinder and a prism Introduce dispersion by beam selection

Parameters

XICE		
\mathcal{L}	- J	

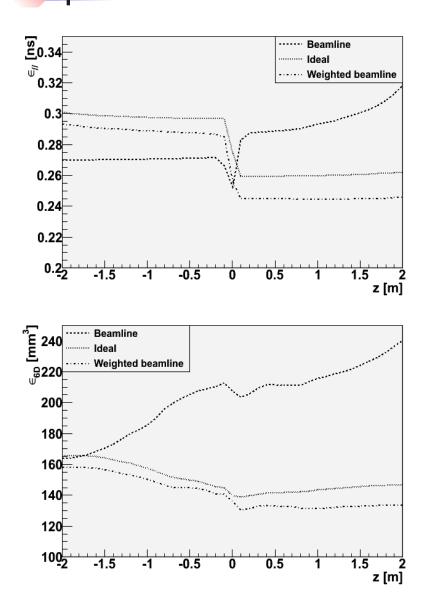
Wedge)	1	be	am d			Bea	m			
				r 🕞 1			Para	imeter		Value	
							Refe	erence P [MeV/c]	200	
			€0) <u>+</u> t-	▶ ★			Trai	nsverse emittance	e [mm]	6	
			\downarrow				Trai	sverse β [mm]		420	
							Tran	isverse α		0	
				•			Lon	gitudinal emittar	nce [mm]	90	
						Longitudinal β [ns]				10	
material	material LiH LiH LiH			C_2H_4	C_2H_4	C_2H_4	Lon	gitudinal $lpha$		0	
θ [°]	30	60	90	30	60	90	RM	RMS Energy Spread [MeV]			
r [mm]	225.0	225.0	225.0	225.0	225.0	225.0	D_x	D_x [mm]			
t [mm]	75.4	75.4	75.4	60.5	60.5	60.5	D_y	D_y [mm]			
h [mm]	365.7	290.3	262.7	337.9	277.4	255.3	D'_x			0	
1 [mm]	98.0	167.6	225.0	90.5	160.2	225.0	D'_y			0	
d [mm]	0	0	37.7	0	0	25.1				10000	
mass [kg]	g] 12.16 16.27 17.7 12.4 17.3 19.0										
Coils											
Coil Len	gth [m]	Inner F	Radius [n	n] Radi	ial Thicki	ness [m]	Mean Z [1	n] Mean R [m]	Current [A/mm ²]	
	.2100		2630		0.0840		0.205	0.3050		3.95	
	.2012		2580		0.0447		0.861	0.2804	118		
	.1995		2580		0.0298		1.30105		137		
	.1106		2580		0.0596		1.701		0.2878 127.		
	.3143		2580					152.44 135.18			
E2 0.	.1106	0.	2580		0.0660			0.2910	135	.18	

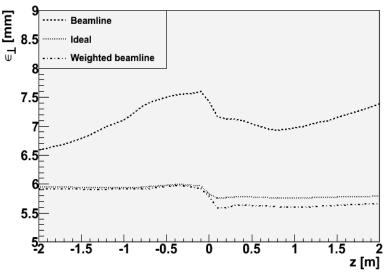

Aims and Methodology


WICE

- Aims
 - First priority is to observe longitudinal cooling
 - Second priority is to observe longitudinal and 6D cooling
 - Third priority is to observe transverse, longitudinal and 6D cooling
 - Fourth priority is to get cooling over a broad range of conditions
- Candidate geometry
 - Can handle any wedge opening angle up to about 90°
 - I take this as a maximum (though might be able to go higher)
 - Consider LiH, Polyethylene (C₂H₄)_n
 - Thickness chosen to give comparable energy loss to IH₂ absorber
 - Thicker wedges excite worse non-linearities

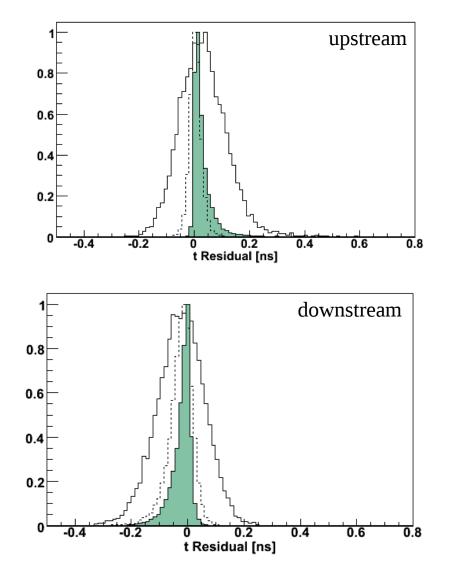
Cooling Signal at 6 mm





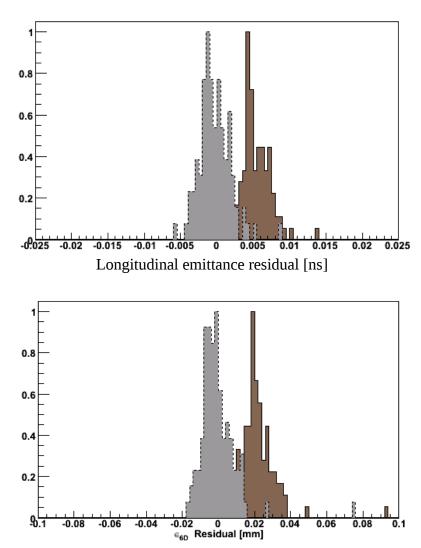
"Standard MICE beam" 6 mm transverse emittance Large 90 mm longitudinal emittance 25 MeV energy spread 200 mm dispersion at the wedge

Realistic Beam and Weighting



- Emittance change for
 - ideal beam
 - realistic beam (from beamline MC)
 - Realistic beam after weighting
- Note different units etc
- 90 degree plastic wedge


Time Measurement


- Time resolution projecting TOF to Tracker Reference Plane
 - ~ 2 m from absorber centre
 - (Filled) energy uncertainty
 - (Dashed) Materials
 - (Full) Both combined with TOF
 - 90 ps RMS upstream
 - 77 ps RMS downstream
- No attempt to use TOF to measure energy
- Compare with beam time spread ~ 1 ns

Emittance Measurement

- Longitudinal emittance convolution systematic around 0.6 mm
 - 30 mm emittance longitudinal
 - 8 mm beta longitudinal
 - May be reducible by careful analysis
- 6D emittance convolution systematic around 0.02 mm
 - (Calculated without dispersion)
 - 6D emittance 10 mm
 - (long 30 mm, transverse 6 mm)
 - Canonical transverse beam
- Detectors are good enough

Evolution of emittance

$$\frac{d\epsilon_x}{dz} = (1 - g_{//})\delta_p\epsilon_x + \chi_x \tag{1}$$

$$\frac{d\epsilon_y}{dz} = \delta_p \epsilon_y + \chi_y \tag{2}$$

$$\frac{d\epsilon_{//}}{dz} = g_{//}\delta_p \epsilon_{//} + \chi_{//}, \qquad (3)$$

where δ_p is the fractional change in momentum per unit length, $1/p \ dp/dz$ and χ_x , χ_y and χ_t are excitation terms given by

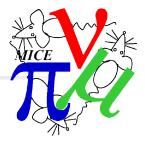
$$\chi_x = \frac{D_x^2}{2\beta_\perp} \frac{d\delta_{RMS}^2}{dz} + \frac{\beta_\perp}{2} \frac{d\theta_{RMS}^2}{dz}$$
(4)

$$\chi_y = \frac{\beta_\perp}{2} \frac{d\theta_{RMS}^2}{dz} \tag{5}$$

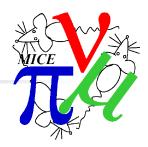

$$\chi_{//} = \frac{\beta_{//}}{2} \frac{d\delta_{RMS}^2}{dz} + \frac{D_x^2}{2\beta_{//}} \frac{d\theta_{RMS}^2}{dz}.$$
 (6)

Here β_{\perp} is the transverse Twiss function, $\beta_{//}$ is the longitudinal Twiss function, $d\theta_{RMS}^2/dz$ is the RMS multiple Coulomb scatter, $d\delta_{RMS}^2/dz$ is the RMS energy straggling and D_x is the dispersion, assumed to be aligned with the wedge. $g_{//}$ is a damping term given by

$$g_{//} = 1 - \frac{D_x}{\rho_0} \frac{d\rho}{dx} \tag{7}$$


Parameter Space

- Explore parameter space to validate theory
- D_x
 - Sample different dispersions
- ε_{//}, β_{//}
 - Sample different longitudinal phase space
- ρ, dρ/dx
 - Requires different absorbers → probably cannot vary
- ε_x, ε_y
 - Sample different emittances
- β_x, β_y
 - Different optics required
- P_z
 - Different optics required
- Can systematics be reduced by exploring the parameter space?


Absorber Systematics

- What are the systematics from the absorber?
 - What data is required to minimise systematics?
- On-axis thickness
 - Measure thickness to ~ 100 micron (out of 60.5 mm)
 - 0.16 % error in dp/p \rightarrow O(0.16) % error in emittance reduction
 - Can constrain by looking at dE/dz for low emittance particles
- Opening angle, density
 - Measure t, h to ~ 100 micron
 - Gives larger uncertainty in d/dx(dE/dz) near to the thin end of the wedge
 - Probably reasonable to take the uncertainty at the wedge centre, i.e. O(0.16%)
 - At worst, O(0.16%) uncertainty in g_{//}
 - Measure density of off-cuts
 - Can measure density as a function of t, h
 - Can constrain by looking at dE/dz as a function of transverse position or amplitude
 - Seek to measure larger emittances for this purpose

Field Systematics

- Uncertainty in field affects
 - Propagation of beam centroid to the absorber
 - Propagation of dispersion to the absorber
 - Propagation of beta to the absorber
- Presume field systematics will be handled by an "absorber out" run
 - Expect no additional data required

Required MICE Time

- Change absorber to wedge and back again (8 days)
- Transverse emittance and pz scan @ 420 mm, high statistics
 - 3 emittance settings * 3 momentum settings
 - Standard SC magnet currents
 - I hour (100k triggers) per run + 3 hours set up time
 - 1 (12 hour) day
- P_z, Beta function at absorber scan with lower statistics
 - Vary beamline to produce 3 emittance settings and 3 momentum settings, keep SC magnets constant, 10k triggers per run
 - 90 minutes to do all that
 - 120 minutes to change magnet currents
 - 3 SC magnet settings per day + 3 hours set up time
 - 10 beta functions => 3 days
 - 10 pz values => 3 days
- 2 days spare
- 17 days total

Conclusions

- Demonstration of emittance exchange is a valuable contribution to the muon collider R&D
- The MICE beamline can be used to propagate the appropriate dispersive beam through Step IV
 - Needs extensive beam sampling
- A plastic wedge will give more longitudinal emittance reduction than LiH
- The MICE detector systems can make a measurement of emittance exchange
- Provisionally, 17 days of MICE time are required
 - 8 days+support staff for an absorber exchange
 - 9 days+physicists for data taking
 - Needs further Monte Carlo to check