Global Track Reconstruction

Jan Greis University of Warwick

MICE Collaboration Meeting 39 St. Catherine's College Oxford

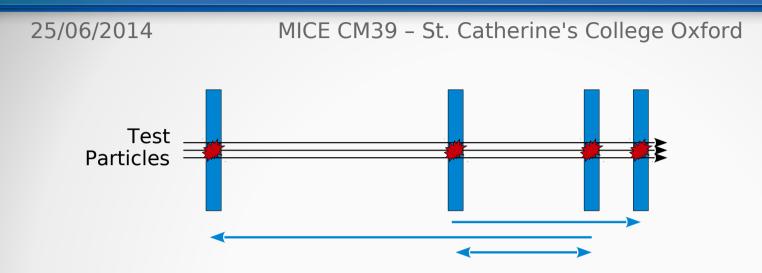
Personnel Changes

25/06/2014

MICE CM39 – St. Catherine's College Oxford

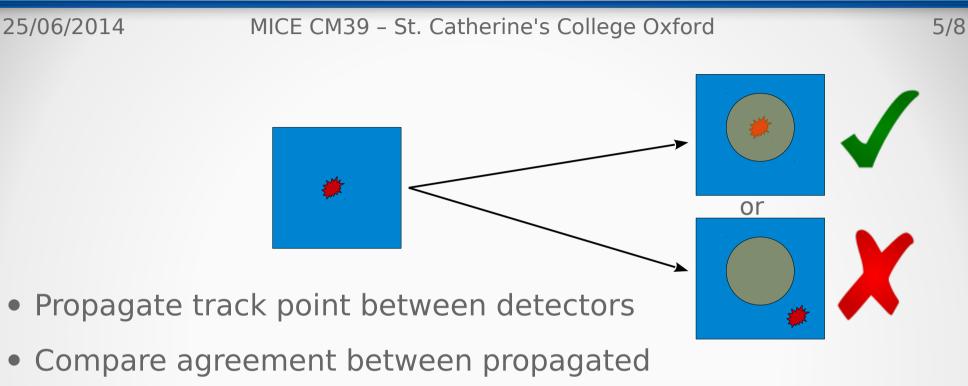
PREVIOUSLY	NOW
<u>Globals Manager</u>	<u>Globals Manager</u>
Ian Taylor	Adam Dobbs
Particle ID	Particle ID
Celeste Pidcott	Celeste Pidcott
Global Track Reconstruction	Global Track Reconstruction
Peter Lane	Jan Greis
Chris Rogers	Chris Rogers
Chris Rogers	Chris Rogers

Current Status


25/06/2014

- Parts of the required code exist thanks to Peter's work
- A number of implementation issues exist requiring changes to the transfer map data structure as well as a complete rewrite of track importing and the mappers responsible for track matching and reconstruction
- Only recently started taking over from Peter, so no results yet

Generating Transfer Maps



- Send a group of particles through the beamline clustered together in phase-space
- Collect hits in virtual planes
- Create transfer maps between virtual planes as needed
 - C^T = (A^TWA)⁻¹A^TWB where A is formed from polynomial expansion of PS vectors at start plane, B from PS vectors at end plane, and W is a weighting based on detector accuracy

Track Matching

- and measured track point
- → Accept / Reject

Track Fitting

25/06/2014

- Direction depends on parameter, e.g. for TOF & Tracker:
 - TOF has poor position resolution, so propagate position backwards from Tracker
 - Tracker has bad or 0 time information, so propagate time forwards from TOF
- χ² minimization between propagated and measured track points, later Kalman filter
- Also have track propagation to uninstrumented beamline sections, e.g. just before entering the cooling channel

Next Steps

25/06/2014 MICE CM39 – St. Catherine's College Oxford

For CM40

- Code refactoring & changes to data structure
- Transfer map based track matching

Later

- Minimization track fitting
- Kalman fitting

25/06/2014

The End

