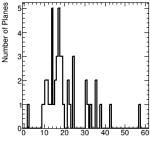
Electron Muon Ranger (EMR) Preparations for Step IV

François Drielsma on behalf of the EMR Group

University of Geneva

June 26, 2014



Single Anode PMT replacement (1)

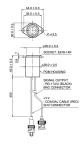
Ageing **Philips XP2972** manufacturer characteristics:

- Useful diameter: Ø 23 mm
- Maximum response: 400 nm
- Sensitivity: $\sim 65~\mu {\rm A}/{\rm Im}$
- Gain: 3×10^6
- Time spread: $\sim 800~{\rm ps}$
- QE: 14.5 %
- \rightarrow 30 years old
- \rightarrow Degraded photocathode
- \rightarrow Reduction of secondary emissions
- $\rightarrow \text{Gain loss}$
- \rightarrow Spurious pulses

SAPMT Plane Charge (mean), ADC counts

Single-Anode PMT replacement (2)

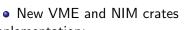
New **Hamamatsu R6427** manufacturer characteristics:


- Useful diameter: Ø 25 mm
- Maximum response: 420 nm
- Sensitivity: $\sim 100~\mu {\rm A/Im}$
- Gain: 5×10^6
- Time pread: $\sim 500~{\rm ps}$
- QE: 24 %

New voltage divider

ightarrow 55 PMTs and 55 VDs (7 spares)

 \rightarrow Characterization tests at CERN in September (noise, dark current, response to MIP like signal) \rightarrow Change done by UniGe technicians at RAL at the beginning of October 2014 (few days work), Necessary



New Control Rack Installation

New elements:

- 47 U rack to replace current one
- AC fan system
- Remote controlled AC power supply
- HVPSU (photomultipliers)
- LVPSU (trigger distribution boards, LED driver, fans)

Implementation:

- New design and layout approval (RAL)
- Installation of remote control switch, connection to the grid (RAL)
- Rack repackaging (UniGe)
- Cables rewiring (RAL)
- Test and commissioning (UniGe)
 - \rightarrow Finalized after the upgrade of the SAPMT, Necessary

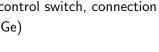
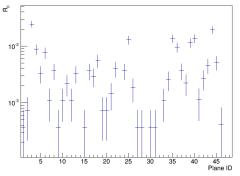


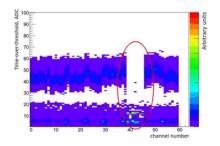
Figure: Remote controlled PSU

PMT High Voltage Optimization

Situation after the SAPMT change:

- Fully commissioned SAPMTs
- All the Multi-anode PMs set to the same voltage
- The PMTs are non-uniform and their response can vary significantly
- \rightarrow Need for a high voltage scan
- \rightarrow Planned in October after rack and SAPMTs installation, Important $_{\text{Missed plane ratio}}$

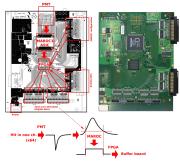



Fig: Probability of given plane to not record a single signal in the MAPMT when a 350 MeV/c muon goes through it. Some of the planes have an efficiency under 99 %; their voltage needs to be adjusted.

Faulty Front End Boards Investigation

Some of the dedicated FEBs exhibit faulty behaviours:

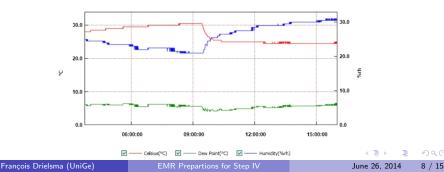
- High levels of noise
- No signal recorded at the right Time over Threshold
- Electronics flaw
- \rightarrow Needs to be investigated to see at which stage the signal is lost \rightarrow Fixing them will provide much required additional spares
- \rightarrow 1 month work, Important



Front End Board ASIC Optimization

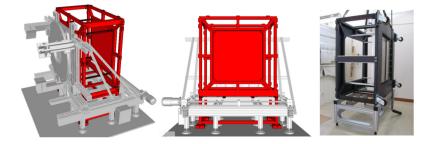
The ASIC used in the EMR is a Multi-Anode ReadOut Chip (MAROC):

- 64 inputs/outputs
- Shapes the signal and measures a Time over Threshold
- Fast response
- Tunable pre-amplifier gain up to a factor 4 with 6 % accuracy
- Tunable threshold value


- \rightarrow Hasn't been studied extensively
- \rightarrow Study of the threshold influence to increase acceptance
- \rightarrow Correction of the MAPMT non-uniformity using the pre-amp
- \rightarrow 2 month work with a test bench at CERN, Secondary

Temperature and Humidity Sensors

Temperature and Humidity sensors are to be installed in the EMR box and the electronics and PSUs rack and should be used to


- Monitor the stability of these variables
- Study the influence they have on the front end electronics (FEBs are known to trip above a certain value of temperature)
- Study the influence of the PMT gain or their readout and adjust their parameters according to the measured values

 \rightarrow Secondary

EMR Frame

- The front panel of the EMR consists of 800kg of steel
- What will be the magnetic field at the level of the EMR?
- Should the structure be reinforced?
- \rightarrow Necessary

Code integration into MAUS

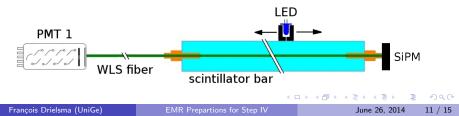
What has been done:

- MC Digitization entirely in MAUS (version 1.1)
- Modication of the data structure implemented
- Data Processors, tests adapted

What needs to be done:

- Modification of the **EMRPlaneHits** map to accommodate two additional reconEvents (noise+decay particles) and fill them
- Integrate the reconstruction code (already exists)

 \rightarrow functional by the end of summer, Necessary.


Digitization Parameters Study

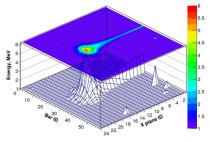
The MC digitization variables are currently based on the data sheets:

- Photoproduction and trapping efficiency in the bars
- Attenuation factors in the fibres
- Quantum Efficiency of the Multi and Single Anode PMTs
- PMT non-uniformity

Studies will be made for the parameters to reflect the detector specificities

- PMT non-uniformity adjusted through calibration
- Light output of the bars with SiPM
- Transport of the light in the fibres with SiPM
- \rightarrow 2 months work, Important.

Improve Track Reconstruction


- The coordinate in each plane as a weighted average of the position of the bars hit and their ToT measurements
- Include the triangular geometry in the range measurement
- Redefine the end point of the primary track using bar multiplicity
- New parameters to tag muons (eDep pattern for instance)

ightarrow 1 month work, Secondary.

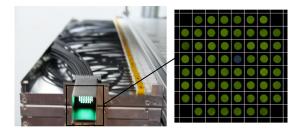
108

Software Advanced Prospects

 Use Monte Carlo digitization as a tool to reconstruct the energy deposition pattern of muons from the measured charge and ToT → 1 month work, Secondary.

• Implement multivariate algorithm for particle identification \rightarrow 1 month work, Secondary.

EMR DAQ


A few standalone features of the EMR need to be integrated in the DAQ

- Calibration of the fADC pedestal before each run (DONE)
- MAROC configuration before each run
- Use LED monitoring to adjust PMT gains (analogue devices are sensitive to temperature changed, magnetic fields, power cycles, etc.)
- Calibration Run (3 weeks of cosmic data taking after major hardware updates, finely tuned by LED monitoring)
- 3 distinct modes of DAQ
 - Beam
 - Cosmic
 - LED pulser
- \rightarrow Possibility to include the EMR in every run, Necessary.

通 ト イヨ ト イヨト

EMR Operations

- Write EMR operation instructions
- Write EMR technical note
 - Cable tags, patch panels map
 - Hardware IDs
 - High Voltage mapping
 - DAQ configurations
 - \rightarrow 1 month work, Important
- Set-up LED monitoring of the PMT gain
 - \rightarrow 1 week work, Important.

- 一司