
MICE Configuration DB

Janusz Martyniak, Imperial College
London

MICE CM39 Software Paralell

Cooling Channel Client API

• The server code exists (jax-ws on Tomcat)

• Easy to create client bindings in java, Python
(preferred), but also in C or C++

• Cooling Channel software itself is written in C,
so it was most natural to provide the CDB
client API in this language

• Use gSoap toolkit to generate C client-side
bindings

26/06/2014 Janusz Martyniak, MICE CM39 2

Cooling Channel setX() Workflow

• To be performed on a supermouse enabled DB
(MLCR)

• User creates a csv file with data to be submitted.

• A single API function is called (takes a file handle
as an argument)

• csv is converted to an XML document

• XML doc is validated against a XML schema

• gSoap client request in made

26/06/2014 Janusz Martyniak, MICE CM39 3

setCoolingchannelForTag(..)

26/06/2014 Janusz Martyniak, MICE CM39 4

setCoolingchannelForTag

csv

XML Validator

CC
gSOAP
client

WS

 Client API (XML)

XMLSchema

<OK/>or<error/>

getCoolingchannelForTag(endp, tag)

• Call a gSOAP client passing an endpoint and a
tag

• Get an XML document as a response

• Build a coolingchannel C struct and return it to
a user

• User can walk through the struct and retrieve
magnet and coil data.

26/06/2014 Janusz Martyniak, MICE CM39 5

Coolingchannel(s) struct(s)

 /*
 * Cooling channel structure. Maintains both direct and sequential access to magnets
 */
 struct coolingchannel {
 char *validfromtime;
 char *validuntiltime;
 CC_NS1_hashtable_t *magnets; /* magnets for this coolingchannel */
 cc_magnet_t *magnet; /* first magnet for this coolingchannel */
 struct coolingchannel *next; /* next coolingchannel */
 };
 typedef struct coolingchannel coolingchannel_t;

 /*
 * Coolingchannels (plural!). Maintains sequential access to
 * cooling channels.
 */
 struct coolingchannels {
 coolingchannel_t *cc; /* first coolingchannel */
 };
 typedef struct coolingchannels coolingchannels_t;

26/06/2014 Janusz Martyniak, MICE CM39 6

Magnets

 /*
 * Cooling channel magnet structure. Maintains direct access to coils via
 * a hashtable and a sequential access via a linked list
 */
 struct cc_magnet {
 char *name;
 char *mode;
 pol_t polarity;
 CC_NS1_hashtable_t *coils; /* coils for this magnet */
 cc_coil_t *coil; /* first coil for this magnet */
 struct cc_magnet *next; // next magnet, or NULL if the last one (for seq.
access)
 };
 typedef struct cc_magnet cc_magnet_t;

26/06/2014 Janusz Martyniak, MICE CM39 7

Coils

 /*

 * Cooling channel coil. Contains a hash table of
attributes.

 */

 struct cc_coil {

 char *name; /* coil name */

 CC_NS1_hashtable_t *attr; /* attribute hash table */

 struct cc_coil *next; /* next coil (for seq. access) */

 };

 typedef struct cc_coil cc_coil_t;

26/06/2014 Janusz Martyniak, MICE CM39 8

usage

Looping over structs is easy, i.e. for magnets:

 if (coolingchannel != NULL) {

 printf(" Coolingchannel: valid from:%s, valid until: %s\n”,

 coolingchannel->validfromtime, coolingchannel->validuntiltime);

 for (magnet = coolingchannel->magnet; magnet != NULL; magnet

 = magnet->next) {

 …..

 }

}

26/06/2014 Janusz Martyniak, MICE CM39 9

Software status

• get/setCoolingchannelForTag ready

• on launchpad

• Other operations ready on XML level, have to
plug-in an XML validation step for set
functions.

• Unit tests exist (Cunit)

• Should be ready for tests in 1-2 weeks

26/06/2014 Janusz Martyniak, MICE CM39 10

Batch Iteration Number API

Create a new table to store a relation between a
batch iteration number used by the Grid
reconstruction system and MAUS. This will allow
to reprocess the data to allow for any changes
not related to the MAUS version itself.

 The batch reconstruction number will
determine the datacards which used by MAUS.

The datacards will be stored in the DB.

See: http://micewww.pp.rl.ac.uk/issues/1285

26/06/2014 Janusz Martyniak, MICE CM39 11

Batch Iteration Number API

• Relevant table created in the DB (locally)

• WS server side implemented (java)

• WS client API written in Python

• Tested locally

• Further development postponed – priority
given to the Coolingchannel C API

• Not tested with MAUS

26/06/2014 Janusz Martyniak, MICE CM39 12

