

Forward Jets, Forward-central Jets, Etc... in CMS

27th May 2014

A. Knutsson (Antwerpen University)

OUTLINE

Inclusive forward jets Inclusive forward + central jets Di-jet k-factor Azimuthal decorrlations Forward Central Jet correlations

Majority of slides based on cut and paste from: AK – DIS2013 Grigory Safranov – DIS2014 Pedro Cipriano – DIS2014

Events with at least one jet with 3.5<| η |<4.7 and $p_{t,iet}$ >35 GeV

- All predictions describe the data within the uncertainties.
- NLO prediction (NLOJET++) too high, but agrees with the data within the large theoretical and experimental uncertainties.
- NLO+PS (POWHEG+PYTHIA6) best.

JHEP 1206 (2012) 036 arXiv:1202.0704

CMS-PAS-SMP-12-012

Combined low-pileup runs (Summer 12) and full 2012 dataset

Data is well-described in wide range of p_T and rapidities by NLO®NP theory predictions

Albert Knutsson

Forward Jets, Forward+Central Jets, Etc...

CMS-PAS-FSQ-12-031 [comb.

All predictions agree with data within the uncertainties

Conclusion: inclusive jet production is well-described by theory predictions over the wide range of p_{τ} and rapidity

Events with at least one jet with

 Comparison to several generators. (ratios on next slide)

JHEP 1206 (2012) 036 arXiv:1202.0704

Albert Knutsson

- Difference in MC description of data between the forward and the central jet.
- Largest shape difference for forward jet.
- Pythia6 and Pythia8, as well as CCFM based CASCADE problem with normalization of the central jet and shape of the forward jet.
- Herwig6, Herwig++, and the BFKL inspired MC HEJ describe the data best.

JHEP 1206 (2012) 036 arXiv:1202.0704

Eur.Phys.J.C72 (2012) 2216

arXiv:1204.0696

Jets reconstructed with the anti-kT algorithm (R=0.5) $p_{t,jet}\!\!>\!\!35$ GeV and $|\eta_{jet}|\!<\!\!4.7$

Observable: Rapidity difference between jets, Δy

Inclusive jets: All jet pairs in the events considered Exclusive jets: Events with exactly two jets above the threshold Mueller-Navelet jets: Most forward and backward jet in the inclusive sample

- Increasing $\Delta y \rightarrow Larger$ phase space for radiation
- Pythia6 (Z2) and Pythia8 (4C) agrees well with data
- Herwig++ (EE3) and HEJ+Ariadne too high at high Δy
- Small effect from MPI (not shown)
- Cascade off

Eur.Phys.J.C72(2012)2216 arXiv:1204.0696

Jets reconstructed with the anti-kT algorithm (R=0.5) $p_{t,jet} {>} 35~GeV$ and $|\eta_{jet}| {<} 4.7$

Observable: Rapidity difference between jets, Δy

Inclusive jets: All jet pairs in the events considered Exclusive jets: Events with exactly two jets above the threshold Mueller-Navellet jets: Most forward and backward jet in the inclusive sample

- Low Δy: Ratio(MN/exclusive) per definition *smaller* than Ratio(inclusive/exclusive)
- High Δy: Ratio(MN/exclusive) per definition same than Ratio(inclusive/exclusive)
- MC data comparison: same conclusion as on previous slide

General conclusion: No visible effects beyond collinear factorization + LL parton-showers

Universiteit Antwerpen

CMS-FSQ-12-002

- $\sqrt{s} = 7$ TeV, Luminosity ≈ 5 pb⁻¹
- Inclusive single jet trigger, and dedicated forward+backward jet trigger.
- Calorimeter jets anti-kt algorithm with R=0.5.
- Events with at least two jets with $p_{t,jet}$ >35 GeV and $|\eta|$ <4.7. The two jets with largest rapidity separation selected.
- Measurement corrected to stable particle level
- Observables:
 - Azimuthal angle between the two jets with largest rapidity separation: : $\Delta\phi$
 - Fourier coefficients, $C_n : d\sigma/d(\Delta \phi) \sim \sum C_n \cos(\pi \Delta \phi)$ $C_1 = \langle \cos(\pi - \Delta \phi) \rangle$ $C_2 = \langle \cos(2^*(\pi - \Delta \phi)) \rangle$ $C_3 = \langle \cos(3^*(\pi - \Delta \phi)) \rangle$
 - Ratios C_2/C_1 and C_3/C_2

These quantities are measurement in 3 bins of rapidity separation between the jets: $0 < \Delta y < 3$ $3 < \Delta y < 6$ $6 < \Delta y < 9.4$ Previously measured up to $\Delta y < 6.0$.

Azimuthal decorrelations – $\Delta \phi$

CMS-FSQ-12-002

Events with at least two hard jets with $|\eta|$ <4.7 and $p_{t,jet}$ >35 GeV

Measure azimuthal difference between the two jets with largest rapidity separation selected.

- Larger azimuthal decorrelation with increasing Δy
- Herwig++ provides the best description of data
- Pythia6/8 too large decorrelation
 - \rightarrow Overall description is opposite to what we see in the di-jet ratios
- Sherpa with 4 final state partons – too much correlation
- CASCADE k_t-factorization based (CCFM) – too strong decorrelations

$C_N = <\cos\left(N\left(\pi - \Delta\varphi\right)\right) >$

11

CMS-FSQ-12-002

- Fourier coefficients, C_n, expected to be sensitive to properties of noncollinear dynamics C₁ = <cos(π - Δφ)> C₂ = <cos(2*(π - Δφ))>
- Herwig++ and Pythia6/8 qualitatively describe $C_N = < \cos(N(\pi \Delta \phi)) >$
- Sherpa overestimates the data

 $C_3 = (\cos(3^*(\pi - \Delta \phi)))$

- CCFM based CASCADE predicts too
 weak angular correlation
- BFKL NLL calculations (arXiv:1302.7012 [Ducloue et al])
 - only valid for $\Delta y > 4$
 - parton level predictions. However, small effect from hadronization compared to systematic uncertainty
 - Too strong angular correlation compared to data

Albert Knutsson

Forward Jets, Forward+Central Jets, Etc...

C_2/C_1 and C_3/C_2

CMS-FSQ-12-002

- DGLAP contributions are expected to partly cancel in the C_{n+1}/C_n ratios.
- C_{n+1}/C_n described by LL DGLAP based generators towards low Δy
- Pythia8, Pythia6 Z2 overestimate C₂/C₁
- Herwig++ underestimate C₂/C₁
- Sherpa overestimates data
- CCFM based CASCADE predicts too small C_{n+1}/C_n
- At Δy > 4 theoretical BFKL NLL describe in particular C₂/C₁ within uncertainties

Pedro Cipriano DIS14

Data

• 3.2 pb⁻¹ from 2010 low pile-up pp collisions at $\sqrt{s} = 7$ TeV

Physics selection

• Events with at least one forward $(3.2 < |\eta| < 4.7)$ and at least one central $(|\eta| < 2.8)$ jet with $p_T > 35$ GeV

Different scenarios

- Inclusive scenario
- 2 Inside–jet veto scenario $(p_{T inside} < 20 \text{ GeV})$
- $\frac{\text{Inside-jet tag scenario}}{(p_{T inside} > 20 \text{ GeV}) }$
- Outside-jet tag scenario (p_{T outside} > 20 GeV)

Pedro Cipriano DIS14

 All tested MCs describe the data, considering the fairly large experimental uncertainty

$\Delta \phi$ in for different of $\Delta \eta$

15

Inter leading jet pt

Outside jet pt

 $\Delta \eta^{out} = \min(|\eta_{outside-jet} - \eta_{central-jet}|, |\eta_{outside-jet} - \eta_{forward-jet}|)$

Expected to give additional sensitivity to PS algorithms and color coherence effects.

$$\eta * = \eta_{inside-jet} - (\eta_{central-jet} + \eta_{forward-jet})/2$$

Expected to give additional sensitivity to PS algorithms and color coherence effects.

 $\Delta \eta^{out} = \min(|\eta_{outside-jet} - \eta_{central-jet}|, |\eta_{outside-jet} - \eta_{forward-jet}|)$

Expected to give additional sensitivity to PS algorithms and color coherence effects.

CMS results on forward and forward-central jets presented:

- Inclusive Forward Jets
 - Large syst. uncert --> MCs describes data.
- Forward + Central Jets
 - Data does not prefer a certain model, but Herwig and HEJ best.
- Ratios of Dijet Production up to $\Delta y < 9.4$
 - Well described by Pythia6 and Pythia8. Herwig fails.
- Azimuthal correlations of jets with large rapidity separation
 - Herwig best. Pythia too decorrelated.
- Forward-Central Jets. Large uncertainties in data --> MCs describes data.
 - → Different DGLAP based generators describe the data differently. DGLAP ~ OK, but not in a consistent way. No MC describes all data.
 - → No deviations beyond collinear-factorization+parton-shower in regions of phase-space where BFKL effects are expected to be enhanced.
 - \rightarrow Deviation between data and MC can not be interpreted as due to non-DGLAP dynamics
 - \rightarrow Failure of MC models is not only a matter of tuning

Back up

Forward-Central Decorrelations

Results - $\Delta \phi$ inclusive scenario

Pedro Cipriano DIS14

- Data fully corrected to hadron level
- $\Delta\phi$ is a steeply growing distribution
- All MC models describe the distribution reasonably well, except for the lower $\Delta\phi$ region
- HERWIG++ has the best overall description
- PYTHIA 6 Z2* without MPI deviates more from data than other PYTHIA 6 tunes

Figure: $\Delta \phi$ in inclusive scenario compared with different MCs

Pedro Cipriano DIS14

Data

• 3.2 pb⁻¹ from 2010 low pile-up pp collisions at $\sqrt{s} = 7$ TeV

Physics selection

• Events with at least one forward $(3.2 < |\eta| < 4.7)$ and at least one central $(|\eta| < 2.8)$ jet with $p_T > 35$ GeV

Different scenarios

- Inclusive scenario
- Inside-jet veto scenario (p_{T inside} < 20 GeV)</p>
- $\frac{\text{Inside-jet tag scenario}}{(p_{T inside} > 20 \text{ GeV}) }$
- Outside-jet tag scenario (p_{T outside} > 20 GeV)

Results - $\Delta \phi$ inclusive scenario in slices of $\Delta \eta$

Pedro Cipriano DIS14

• At large $\Delta\eta$ there is more phase space for additional radiation

- At small $\Delta \eta$ the distribution is falling much more steeply than at large rapidity separation (from 2 to 2.5 orders of magnitude)
- $\bullet\,$ In general the MC describe this effect, except for the lower $\Delta\phi\,$ region
- HERWIG++ provides the best overall description
- PYTHIA 6 $Z2^*$ without MPI deviates event more from data than

Results - $\Delta \phi$ inside-jet veto scenario

- The correlation is stronger than in the inclusive scenario
- PYTHIA deviates more from data in the inclusive scenario while HERWIG describes it better for lower $\Delta\phi$
- The best description is provided by HERWIG++
- PYTHIA 6 Z2* without MPI deviates from both data and other tunes for lower $\Delta \phi$, having too strong correlation

Figure: $\Delta \phi$ in inside–jet veto scenario compared with MC predictions

Results - $\Delta \phi$ inside-jet veto scenario

- The correlation is stronger than in the inclusive scenario
- PYTHIA deviates more from data in the inclusive scenario while HERWIG describes it better for lower $\Delta\phi$
- The best description is provided by HERWIG++
- PYTHIA 6 Z2* without MPI deviates from both data and other tunes for lower $\Delta \phi$, having too strong correlation

Figure: $\Delta \phi$ in inside–jet veto scenario compared with MC predictions

Pedro Cipriano DIS14

Results - $\Delta \phi$ inside-jet veto scenario in slices of $\Delta \eta$

Pedro Cipriano DIS14

- In the inside-jet veto scenario, the slopes are steeper (3 orders of magnitude)
- The correlation shape has no significant variation with $\Delta\eta$
- HERWIG++ gives the best description
- For lower $\Delta \phi$ region PYTHIA 6 Z2* without MPI is one order of

Results - $\Delta \phi$ inside–jet tag scenario

Pedro Cipriano DIS14

CMS Preliminary, pp → 2 jets + X [INSIDE-JET TAG] $\sqrt{s} = 7 \text{ TeV}$ dơ/d∆≬ [pb] Data Pythia 6 - P11 Tune Pythia 6 - AMBT1 Tune Pythia 6 - Z2* Tune Pythia 6 - Z2* Tune (No MPI 10 10 L_{int} = 3.2 pb⁻¹, Anti-k_ (R = 0.5) p^{jet} > 35 GeV and Inl < 2.8 > 35 GeV and 3.2 < Inl < 4</p> 0.5 1.5 A

frad1 CMS Preliminary, pp → 2 jets + X [INSIDE-JET TAG] $\sqrt{s} = 7 \text{ TeV}$ L_{int} = 3.2 pb⁻¹, Anti-k₊ (R = 0.5) Data MC/DAT p_et > 35 GeV and [n] < 2.8 2.5 Herwig 6 p_et > 35 GeV and 3.2 < |n| < 4.7 Herwig ++ Pythia 8 - 4C 1.5 0.5 0.5 2 1.5 2.5

- The correlation is weaker than in the inclusive scenario
- Most predictions seem to yield a reasonable shape but fail slightly in the normalization
- The best description is provided by HERWIG++
- PYTHIA 6 Z2* without MPI predicts a much lower cross-section than observed

Figure: $\Delta \phi$ in inside–jet tag scenario compared with different MCs

Results - $\Delta\phi$ inside–jet tag scenario in slices of $\Delta\eta$

Pedro Cipriano DIS14

- The slope decreases as function of $\Delta \eta$ (2 to 1.5 orders of magnitude)
- The correlation is much weaker that in the inside-jet veto scenario
- HERWIG++ yields the best description
- PYTHIA 6 $Z2^*$ without MPI fails both in slope and normalization

Results - Leading inter-leading jet p_T

Pedro Cipriano DIS14

- shows a deficit for the lower p_T region
- $\bullet \ PYTHIA \ 6$ P11 provides the best prediction
- Figure: Leading inter-leading jet p_T compared with MC predictions

