Issues on jets in kt-factorisation

H. Jung (DESY, Uni Antwerp)

How to obtainTMDs?

take derivative of integrated PDF:

$$f(x, k_{\perp}^2) = \frac{dg(x, k_{\perp}^2)}{dk_{\perp}^2} = \left[\frac{\alpha_{\rm s}}{2\pi} \int_x^{1-\delta} P(z)g\left(\frac{x}{z}, k_{\perp}^2\right) dz\right]$$

KMR approach:

$$f(x, k_{\perp}^{2}, \mu^{2}) = \frac{dg(x, \mu^{2})}{d\mu^{2}} \exp\left(-\int_{k_{\perp}^{2}}^{\mu^{2}} \frac{\alpha_{s}}{2\pi} d\log k_{\perp}^{2} \sum_{i} \int_{0}^{1} P(z') dz'\right)$$

- generated from integrated PDF, only last emission generates transverse momentum via sudakov form factor.
- this is essentially what is done in standard MC event generators:
 - → use of collinear ME
 - \rightarrow add parton shower which produces k_t kick for ME parton
 - → no double counting, since p_t of ME partons larger than k_t of shower partons $p_t \ge k_t$

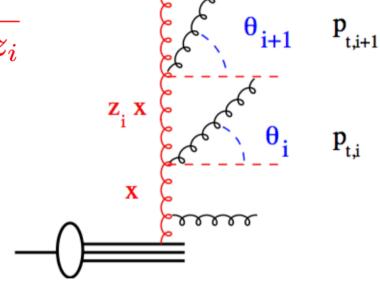
How to obtain TMDs? CCFM approach

Color coherence requires angular ordering instead of p, ordering ...

$$q_i > z_{i-1}q_{i-1}$$

with $q_i = rac{p_{ti}}{1-z_i}$

- → recover DGLAP with q ordering at medium and large x
- \rightarrow at small x, no restriction on q p_{ti} can perform a random walk
- → splitting fct:



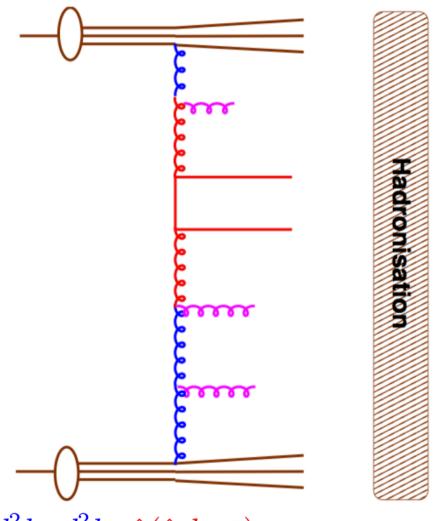
$$\tilde{P}_{g}(z,q,k_{t}) = \bar{\alpha}_{s} \left[\frac{1}{1-z} - 1 + \frac{z(1-z)}{2} + \left(\frac{1}{z} - 1 + \frac{z(1-z)}{2} \right) \Delta_{ns} \right]$$

$$\log \Delta_{ns} = -\bar{\alpha}_{s} \int_{0}^{1} \frac{dz'}{z'} \int \frac{dq^{2}}{q^{2}} \Theta(k_{t} - q) \Theta(q - z' p_{t})$$

CataniCiafaloniFioraniMarchesini evolution forms a bridge between DGLAP and BFKL evolution

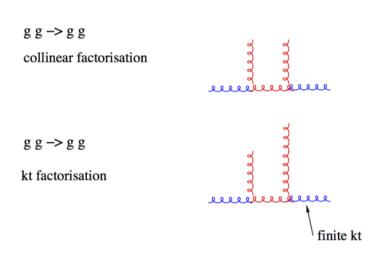
TMDs and the general pp case

- basic elements are:
 - Matrix Elements:
 - on shell/off shell
 - PDFs
 - → unintegrated PDFs
 - Parton Shower
 - → angular ordering (CCFM)
- Proton remnant and hadronization handled by standard hadronization program, e.g. PYTHIA

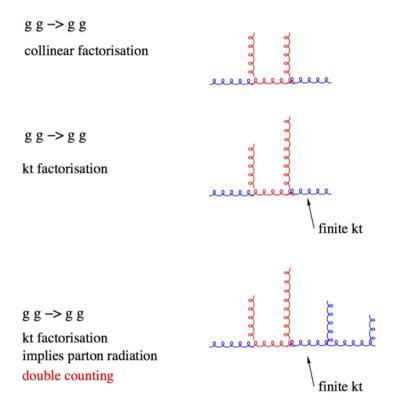


$$\sigma(pp o qar{q} + X) = \int rac{dx_{g1}}{x_{g1}} rac{dx_{g2}}{x_{g2}} \int d^2k_{t1} d^2k_{t2} \hat{\sigma}(\hat{s}, k_t, ar{q}) \\ imes x_{g1} \mathcal{A}(x_{g1}, k_{t1}, ar{q}) x_{g2} \mathcal{A}(x_{g2}, k_{t2}, ar{q})$$

• Collinear factorization no k_t of initial state

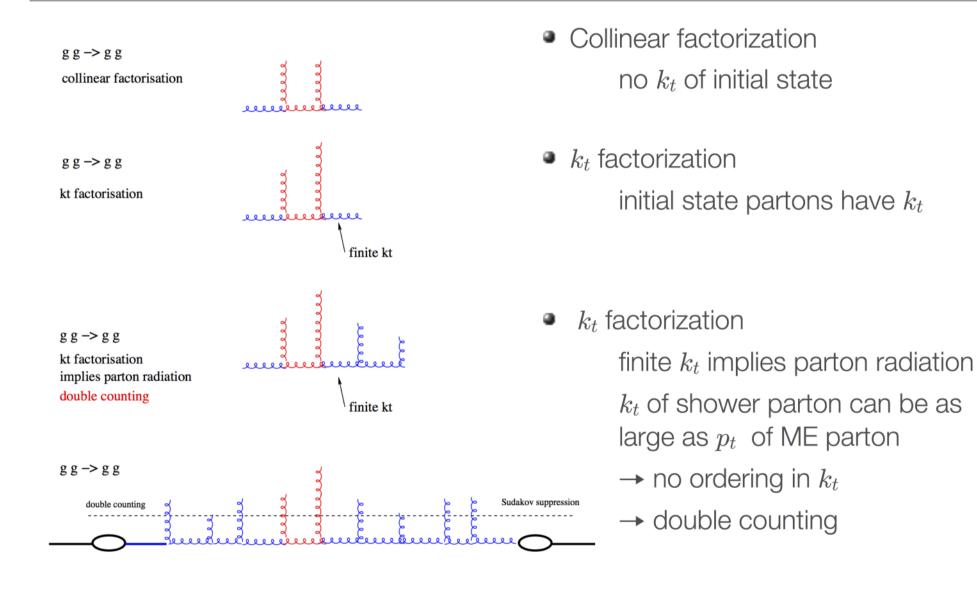


- Collinear factorization
 no k_t of initial state
- k_t factorization initial state partons have k_t

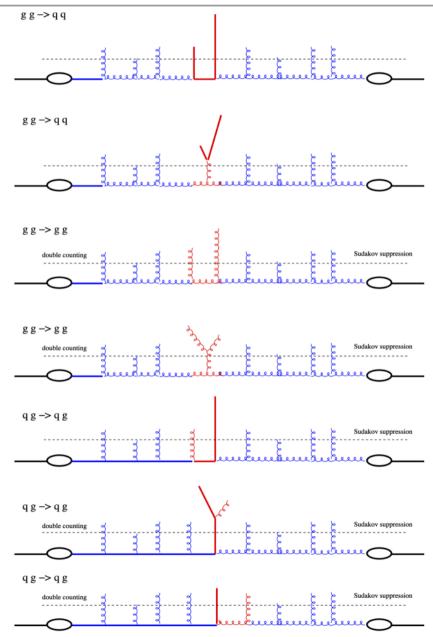


- Collinear factorization no k_t of initial state
- k_t factorization initial state partons have k_t

- k_t factorization finite k_t implies parton radiation k_t of shower parton can be as large as p_t of ME parton
 - \rightarrow no ordering in k_t
 - → double counting



TMDs and pp: factorization issues



- k_t of initial partons a priori not restricted, extends to large k_t
- with k_t of initial partons, identification of hard scattering no longer trivial for light partons
- double counting issues (factorization) within and crossed process chains: $gg \rightarrow gg$ partially included in $gg \rightarrow qq$

Factorization issues for TMDs in pp

- High energy factorization proven for
 - DIS at small x
 - heavy quark production in pp
 - Boson (Z,W,H) production in pp

- TMD factorization proven for
 - (semi)-inclusive DIS
 - Boson production in pp

- Factorization breaking in
 - back-to-back di-hadron (di-jet) production in pp
 - how large?
 - problems also in non back-to-back region?

Backup Slides

Initial state parton showers using uPDFs

- Backward evolution from hard scattering towards proton
- No change in kinematics of hard scattering, since k_t of initial state partons treated by uPDF
- In all branchings kinematics are constraint by uPDF
- using the same frame for uPDF evolution and parton shower, no free or additional parameters are left for shower

