CLEARPEM AND ENDOTOFPET-US

Inna Gertsenshteyn
Crystal Clear Collaboration
May 26, 2014

HOW THE MEASUREMENTS WORK

- There is a radioactive Cs-137 sample sitting 30mm above the PMT. It releases gammas into the LYSO (Cerium-doped Lutetium Yttrium Orhosilicate) crystal. The scintillator reemits the gammas in the form of optical photons. These photons are then detected by the PMT.
- The PMT absorbs the light emitted by the scintillator and reemits it in the form of electrons via the photoelectric effect. Those get converted into an electronic signal.
- Desirable characteristic: high scintillation light yield (number of photons emitted per eV of radiation energy absorbed).

MEASURING SCINTILLATING CRYSTALS

 Test various lengths of crystals wrapped in different materials (Teflon, Vikuiti) in addition to naked configurations for comparisons

Goals:

- Understanding which wrapping material produces more light
- To see whether or not our experimental results could be reproduced by simulations, and vice versa.

Holders

Mask

Teflon Vikuiti

MATERIALS

Teflon tape:

light reflector; minimizes light loss

Optical grease:

coupling agent used to eliminate air space between the crystal and the PMT

Vikuiti:

brand that makes prismatic brightness enhancement films for LCD screens

RESULTS

CURRENT TASKS

While working with the crystals, I will continue to collect data with different forms of wrapping to be sure that our simulations are accurate.

CLEARPEM DETECTOR FOR BREAST CANCER

- Developed by Crystal Clear Collaboration
- ClearPEM module consists of a compact PET scanner designed for breast analysis with high spatial resolution
- The simulations that are currently being done are all for improving the detectors in ClearPEM in order to make future models are more efficient while having lower production costs

CLEARPEM ADVANTAGES

From MRI, high rate of false positives leads to unnecessary biopsies (60-85%) = high costs and risks

Lesions only detected by ClearPEM →

Bilateral Breast Cancer

Right Breast

Left Breast

Multifocal Breast Cancer

MRI

Coronal ClearPEM-Sonic

Sagittal ClearPEM-Sonic

Whole-body PET

MRI

CT

Whole-body PET

CT

ClearPEM-Sonic PEM

ClearPEM-Sonic PEM

Tumor in Left Breast detected by only MRI and ClearPEM

BACK TO ENDOTOFPET

Physical crystals

Left: 2 arrays of 9x18 crystals, 0.17x0.17.15 mm³ each for the internal probe

Right: 256 arrays of 4x4 crystals, 3.5x3.5x15 mm³ for the external plate

ANALYTICAL PHANTOMS

Left: phantom for prostate

Bottom: phantom for pancreas

VOXELIZED PHANTOMS

DICOM → CONVERSION TOOLS → GAMOS

- Real CT and PET scans from dataset of patients in Centre Hospitalier Universitaire Vaudois, Lausanne
- We are able to add a radioactive point source or extended sources to these simulations
- Can easily insert the ENDOTOFPET probe inside the body and plate outside to simulate gamma production and detection (in GAMOS)
- Relatively few problems so far

PRELIMINARY SIMULATIONS

- 3 x 3 x 3 cm of reconstructed area
- Voxels of 1 mm
- Amide software for quantitative analysis

Lesion with background

Such a bright source \rightarrow shows that background noise will not be much of a problem

Background only

QUESTIONS?