

Update

https://twiki.cern.ch/twiki/bin/view/Main/PPSBrazil

27/05/2014 – PPS Physics and detector performance CBPF - UERJ

Remarks

Samples

- ExHuMe (pp \rightarrow gg \rightarrow dijets) + Pythia 8 (minBias, PU Run II scenario)
 - σ = ~1700.0 fb
 - 8000 events NoOOT with PU
 - 2000 events NoOOT without PU
 - Generator cuts:
 - 0 < |t| < 4
 - 0.01 < ξ < 0.2
 - 300 < M < 2000 GeV

Code

Working in CMSSW_6_2_X release.

Kinematic Selection for CEP

- Select the leading jet and choose it as the central vertex reference
- Associate the central vertex with PPS vertex
- Tagging reconstructed protons that arrived to both PPS arms and are in the region:
 - Tracking station 1: -9.0 < y < 9.0 mm -23.15 < x < -3.15 mm
 - Tracking station 2: -9.0 < y < 9.0 mm -22.03 < x < -2.03 mm
- Select jets from the same vertex as the leading jet (CEP algorithm)
 - pT (j1,j2) > 50 GeV/c
 - $|\eta| (j1, j2) < 2.0$

Numbers

Selections (Number of events)	MC_noOOT_noPU	MC_noOOT_PU
Total Number of events	2000	8000
Associate vertex	320	2451
# PPS Tagging	58	245
# Jet1Pt > 50 GeV&&Jet2Pt > 50 GeV	29	150
# Jet1Eta < 2.0 && Jet2Eta < 2.0	28	142
Number of expect events for 100 fb ⁻¹	~2370	~2990

Up (noOOT_noPU) Down (noOOT_PU)

Up (noOOT_noPU) Down (noOOT_PU)

After cuts

27/05/2014 – PPS Physics and detector performance

CBPF - UERJ

UP (noOOT_noPU) Down(noOOT_PU)

UP (noOOT_noPU) Down(noOOT_PU)

UP (noOOT_noPU) Down(noOOT_PU)

After cuts

After cuts

After cuts

Final Remarks

- Beam background needs to be included (from Totem data) in this analysis (keeping in touch with Jonathan) as well as Pomwig DPE
- The current results seems to be consistent as they are similar for the samples with and without pileup
- We are studying how to improve the M_{μ} resolution