

CMS Cloud Activity on the HLT (and AI)

Andrew Lahiff
33rd GridPP Collaboration Meeting, Ambleside

Introduction

- Areas of cloud activity in CMS
 - HLT cloud
 - CERN Agile Infrastructure (Meyrin, Wiger)
 - Tier-0
 - User analysis
- Significant contribution from the UK
 - David Colling, Adam Huffman, Andrew Lahiff, Daniela Bauer,...

HLT

- What is the CMS High Level Trigger?
 - Compute farm with over 13000 cores located at Point 5
 - No large local storage system, some nodes have small disks
- Computing power
 - 195 kHS06 (150 kHS06 easily useable)
 - HLT is comparable in capacity to entire CMS T1 request
- We should make the most possible use of the resources
 - Use the HLT as production resource for processing during LS1
 - Use the HLT whenever possible during Run 2, e.g.
 - Maintenance & machine development periods
 - In the gaps between fills
 - Possibly even during running if conditions mean that the HLT isn't fully required

Between stable beams in 2012

Time when beams not stable (end of SB in one fill to SB in next)

Stable beams in 2012

On average, stable beam is ~50% of time between stable beam.

Therefore, HLT cloud should be running for >60% of 2015.

That means a resource of ~2/3 of all our T1 CPU capacity.

- Why a cloud?
 - Need to guarantee there is no interference with the HLT's main role
- Essential to be able to migrate on & off quickly
 - Much work has gone into ensuring we can start up jobs on the HLT cloud as fast as possible
 - Need to be able to start up as quickly as possible in order to make best usage of resources after LS1
 - Required lots of tuning/fixes/etc
 - OpenStack
 - HTCondor
 - glideinWMS
 - WMAgent

- Using OpenStack Grizzly
- 60 Gbit link to CERN
 - upgraded from 2 x 10 Gbit in February
- Currently have just over 4000 cores available
 - 144 x C6100 (12 cores, 20 GB RAM)
 - 150 x C6220 (16 cores, 28 GB RAM)
- Moving nodes between DAQ and OpenStack
 - "Shifter" under development
 - GUI tool for allocating part or all of the cluster to either DAQ or OpenStack, and migrating between them

CERN AI

- CERN's OpenStack cloud
- Doesn't contain tuning that was done on the HLT OpenStack instance...

HLT/Al cloud status

- HLT & AI clouds added to production glideinWMS infrastructure in May
- Being used routinely for production
 - Reprocessing: workflows assigned to CERN LSF, HLT, AI, reading input data from EOS
 - MC production: workflows assigned to HLT, AI + many T1s,
 T2s

Job submission

Monitoring

Ganglia monitoring for Al VMs

HLT usage since March

Network usage since March

60 Gbit link from P5 to CERN

for CSA14

Usage since March:

~3000 MC processing jobs running

July

HLT efficiency

- Job successes & failures of CSA14 MC processing
 - Failures due to file access problems
 - Not cloud-related: "hot" files on EOS (replication needed)

HLT efficiency

activity

Network between P5 and CERN

Al usage since March

T2_CH_CERN_AI (OpenStack AI "CMS Evolution" project)

Al usage since March

T2_CH_CERN_T0 (OpenStack AI "CMS Tier0" project)

Start-up rates

HLT seems much faster

Ramp up time on the HLT

Wigner

- Aim to treat nodes at Meyrin & Wigner transparently within a single site
- Currently have Wigner setup as a separate site for testing
- Example CSA14 MC processing workflow:

2011 HI rereco

- Requests made in March 2014 for HI rereco
 - Essential for CMS contribution to Quark Matter conference in May
- Status by late March
 - A workflow running on HLT cloud making very good progress
 - A workflow running at Vanderbilt not expected to complete in time for the conference
 - Time per event much longer than expected
 - Storage problems at Vanderbilt

2011 HI rereco

- Decided to try 2 methods
 - Run a clone of the workflow on the HLT & Al clouds
 - Run another clone at multiple sites reading data using xrootd
 - Failure rate very high, didn't make good progress
 - Workflow aborted
- The workflow running on the HLT & AI clouds completed successfully in time for the conference
 - Major success of cloud resources for CMS

2011 HI ReReco

Heavy Ion 2011 data re-reco in April 2014 - jobs running on HLT+AI

April 16th - Credits to D. Mason, A. Lahiff, A. McCrea, M. Sgaravatto. Data collected by A.Lahiff. Details on periods by A.Lahiff, M. Sgaravatto. Overview plot by D.Bonacorsi

Summary

- HLT & CERN AI clouds used routinely for production
 - Both processing and MC production
 - Already an important resource
 - Without the HLT cloud, CMS wouldn't have been able to present work at the Quark Matter conference

Future

- Analysis jobs
- Include Winger in routine production activities
- Additional cloud sites