Ceph

A complete introduction.

tinerary

What is Ceph?

* What's this CRUSH thing?
Components

Installation

Logical structure

Extensions

Cephis...

* An open-source, scalable, high-performance,
distributed (parallel, tault-tolerant) filesystem.

» Core functionality: Object Store

* Filesystem, block device and S3 like
interfaces build on this.

* Big idea: rados/CRUSH for block placement
+ location. (See Sage Weil's PhD thesis)

Naming

e Strongly octupus/squid-oriented naming convention
(cephalopod)

* Release Versions have names derived from species
of cephalopod, alphabetically ordered

* Argonaut, Bobtail, Cuttlefish, Dumpling, Emperor, Firefly,
Giant

« Commercial support company called Inktank.

* RedHat is now a major partner in this.

CRUSH

* [raditional storage systems store data
locations in a table somewhere.

o flat file, in memory, in MySQL db, etc...

* Jo write or read a file, you need to read this
table.

* Obvious bottleneck. Single point of failure”

CRUSH

* Rather than storing path as metadata, we
could calculate it from a hash for each file.

e (i.e. Rucio does this for ATLAS, at directory
level)

* No lookups needed to get file if we know
name...

 But doesn't help load balancing etc...

CRUSH

* Simple hash-maps cannot cope with a change
{0 storage geometry.

» CRUSH provides improved block placement,
with a mechanism for migrating the mappings
to a change in geometry.

 Notably, it claims to minimise the number of
nlocks which need relocated when that
nappens.

CRUSH Hierarchy

CRUSH map is a tree, with configurable depth.

“‘Buckets” map to particular depths in the tree. (e.Q.
Root -> Room -> Rack -> Node -> Filesystem)

Ceph generates a default geometry
* You can customise this as much as you want.

 How about adding a “Site” bucket?

Example CRUSH map (1)

crush map
choose_local_tries 0

choose_local_fallback_tries 0 .
choose_total_tries 50 General Settlngs

chooseleaf_descend_once 1

S0 G Device -> OSD mappings
(osds are always the leaves of the tree)

"‘Bucket hierarchy”

chassis
Root
Region Region
datacenter
region /\A \
0 root Datacenter Datacenter e
4 e

Room

/

Example CRUSH map (2)

. # buckets
Actual bucket assignments host. nodedls {
(note that the full depth of # weight 0.050
the bucket tree is not needed) e

1tem osd.® weight 0.050

i/

ralhost /node@19 {
id -3
k)LJ()F(EBt |E§\/E§| #lweight 0.050
. t
(non-leaf buckets have -ve ids) hash © % rienkinsy

1tem osd.1l weight 0.050
</ |k
host/node@17 {

| id -4
selection algorithm to use 4 ¢ weight 003

hashing algorithm to use hash @ # rjenkinsl

1tem osd.2 weight 0.050

+ P

voot default {
id -1

0

B _ _] # weight 0.150
children of this bucket dlg strav I
(can have different edge weights) item node@18 weight 0.050

L 4 item node@19 weight 0.050

1tem node@l7 weight 0.050

Example CRUSH map (3)

Rules for ditterent pool types

rule replicated_ruleset {
ruleset 0

type replicated “Default” replication rule.

min_size 1 , , ,

max_size 10 Generates replicas distributed across OSDs.
step take default

step chooseleaf firstn @ type host

step emit

rule erasure-code { EI’aSUI'e-COdIﬂg I’U|e

ruleset 1

type erasure Generates additional EC chunks.
il (The min_size is 3 because even a single chunk object

max_size 20

S I aaIa bl \\Vould need additional EC chunks.)
step take default

step chooseleaf indep @ type host

step emit

end crush map

Components

* MON

* Monitor - knows the Cluster Map (=CRUSH Map
+ some other details)

* Can have more than one (they vote on
consistency via Paxos for high availability and
reliability).

* Talk to everything to distribute the Storage
Geometry, and arrange updates to it.

Components

« OSD

* Object Storage Device - stores blocks of data
(and metadata).

 Need at least three for resilience in default config.

» Jalk to each other to agree on replica status,
check health.

* Talk to MONSs to update Storage Geometry

Autonomic functions in Ceph

Map consistency

/ (Paxos)
‘QSD Stauy . \Map status
4'

Heartbeat,
OSD Peering,
Replication

\

Writing a file to Ceph

(1 Get Map) @
—

2 Calculate
Hash,
Placement

3 Place 1st Copy
of each Chunk

Reading a file from Ceph

(1 Get Map)

2 Calculate
Hash,
Placement

3 Retrieve chunks

OSD

o Lo

Installing

e On RHEL (...SL...Centos...)
 Add ceph repo to all nodes in storage cluster.

e Install “admin node” (manages other nodes’
services).

e sudo yum update && sudo yum install ceph-deploy

e Set up passwordless ssh between admin and
other nodes.

Installing (2)

e Create initial list of MONSs:

e ceph-deploy new nodel nodeZ2 (etc)

* [nstall/activate node types:

e ceph-deploy mon create nodel MON

e ceph-deploy osd prepare nodex:path/to/fs
OSD

e ceph-deploy osd activate nodex

|_ogical structure

* Partition global storage into "Pools”
* Can be just a logical division

» Can also enforce different permissions,
replication strategies, etc

* Ceph creates a default pool for you when you
install.

Placement Groups

e Pools contain Placement Groups (PGs).
e Like individual stripe sets for data.
* A given object is assigned to a PG for distribution.

« Automatically generated tor you!

PG ID = Pool.PG

[ceph@node@17 my-cluster]$ ceph pg map 0.1

osdmap €68 pg 0.1 (0.1) -> up [1,2,0] acting [1,2,0]

vector of OSD ids to stripe over
(first OSD in vector is master)

Examples

Ceph “Status”

[ceph@node@17 my-cluster]$ ceph -s
cluster 1738aad3-1413-42b8-9ef8-d3955dadaf83 MON Status

health HEALTH_OK (note PAXOS election info)
monmap e3: 3 mons at

{node017=10.141.101.17:6789/0,n0de?18=10.141.101.18:6789/0,node019=10.141.101.19:6789/0},
election epoch 22, quorum 0,1,2 node@17,node@18,node?19
osdmap e68: 3 osds: 3 up, 3 1n

pgmap v64654: 488 pgs, 9 pools, 2048 MB data, 45 objects
24899 MB used, 115 GB / 147 GB avail OSD and PG Status

488 active+clean

[ceph@node@17 my-cluster]$ ceph osd lspools

@ data,l metadata,2 rbd,3 ecpool,4 .rgw.root,5 .rgw.control,6 .rgw,7 .rgw.gc,8 .users.uid,

List all pools in this Ceph Cluster
data is the default pool
metadata is also default (used by CephFS extension)
rbd created by Ceph Block Device extension
ecpool is a test erasure-encoded pool
remainder support Ceph Object Gateway (S3, Swift)

Extensions

 POSIX(ish) Filesystem CephFS

 Need another component - MDS (MetaData
Server).

« MDS handles the metadata heavy aspects of
being a POSIX filesystem.

« Can have more than one (they do failover and
load balancing).

CephFS model

Client

cephfs

e Dataf | tached

Metadata

ored Metadata

Extensions

* Object Gateway (S3, Swift)
* Need another component - radosgw
 Provides HTTP(S) interface
» Maps Ceph Objects to S3/Swift style objects.

e Supports federated cloud storage.

Extensions

* Block Device
 Need another component - librbad

* Presents storage as a Block Device (stored as
AMB chunks on underlying Ceph Object Store)

* |nteracts poorly with erasure-coded pool
backends (on writes).

Extensions

* Anything you want!
* |ibrados has a well documented, public AP
* All extensions are built on it.

* (I'm currently working on a GFAL2 plugin for it,
for example.)

Further Reading

« Sage Weil’s PhD Thesis: http://ceph.com/papers/
weil-thesis.pdf (2007)

* Ceph support docs: http://ceph.com/docs/master/

http://ceph.com/papers/weil-thesis.pdf
http://ceph.com/docs/master/

