
Ceph
A complete introduction.

Itinerary
• What is Ceph?

• What’s this CRUSH thing?

• Components

• Installation

• Logical structure

• Extensions

Ceph is…
• An open-source, scalable, high-performance,

distributed (parallel, fault-tolerant) filesystem.

• Core functionality: Object Store

• Filesystem, block device and S3 like
interfaces build on this.

• Big idea: rados/CRUSH for block placement
+ location. (See Sage Weil’s PhD thesis)

Naming
• Strongly octupus/squid-oriented naming convention

(cephalopod)

• Release Versions have names derived from species
of cephalopod, alphabetically ordered

• Argonaut, Bobtail, Cuttlefish, Dumpling, Emperor, Firefly,
Giant

• Commercial support company called Inktank.

• RedHat is now a major partner in this.

CRUSH
• Traditional storage systems store data

locations in a table somewhere.

• flat file, in memory, in MySQL db, etc…

• To write or read a file, you need to read this
table.

• Obvious bottleneck. Single point of failure?

CRUSH
• Rather than storing path as metadata, we

could calculate it from a hash for each file.

• (i.e. Rucio does this for ATLAS, at directory
level)

• No lookups needed to get file if we know
name…

• But doesn’t help load balancing etc…

CRUSH
• Simple hash-maps cannot cope with a change

to storage geometry.

• CRUSH provides improved block placement,
with a mechanism for migrating the mappings
to a change in geometry.

• Notably, it claims to minimise the number of
blocks which need relocated when that
happens.

CRUSH Hierarchy
• CRUSH map is a tree, with configurable depth.

• “Buckets” map to particular depths in the tree. (e.g.
Root -> Room -> Rack -> Node -> Filesystem)

• Ceph generates a default geometry

• You can customise this as much as you want.

• How about adding a “Site” bucket?

# begin crush map	
tunable choose_local_tries 0	
tunable choose_local_fallback_tries 0	
tunable choose_total_tries 50	
tunable chooseleaf_descend_once 1	
!
# devices	
device 0 osd.0	
device 1 osd.1	
device 2 osd.2	
!
# types	
type 0 osd	
type 1 host	
type 2 chassis	
type 3 rack	
type 4 row	
type 5 pdu	
type 6 pod	
type 7 room	
type 8 datacenter	
type 9 region	
type 10 root	!

Example CRUSH map (1)

“Bucket hierarchy”

General settings

Root

Region

…

Datacenter

Room

Region

Datacenter

…

…

Device -> OSD mappings
(osds are always the leaves of the tree)

# buckets	
host node018 {	
 id -2	
 # weight 0.050	
 alg straw	
 hash 0 # rjenkins1	
 item osd.0 weight 0.050	
}	
host node019 {	
 id -3 	
 # weight 0.050	
 alg straw	
 hash 0 # rjenkins1	
 item osd.1 weight 0.050	
}	
host node017 {	
 id -4	
 # weight 0.050	
 alg straw	
 hash 0 # rjenkins1	
 item osd.2 weight 0.050	
}	
root default {	
 id -1	
 # weight 0.150	
 alg straw	
 hash 0 # rjenkins1	
 item node018 weight 0.050	
 item node019 weight 0.050	
 item node017 weight 0.050	
}	

Example CRUSH map (2)

Actual bucket assignments
(note that the full depth of

the bucket tree is not needed)

bucket level
(non-leaf buckets have -ve ids)

selection algorithm to use
hashing algorithm to use

children of this bucket
(can have different edge weights)

# rules	
rule replicated_ruleset {	
 ruleset 0	
 type replicated	
 min_size 1	
 max_size 10	
 step take default	
 step chooseleaf firstn 0 type host	
 step emit	
}	
rule erasure-code {	
 ruleset 1	
 type erasure	
 min_size 3	
 max_size 20	
 step set_chooseleaf_tries 5	
 step take default	
 step chooseleaf indep 0 type host	
 step emit	
}	
!
# end crush map	

Example CRUSH map (3)

Rules for different pool types

“Default” replication rule.
Generates replicas distributed across OSDs.

Erasure-coding rule.
Generates additional EC chunks.

(The min_size is 3 because even a single chunk object
 would need additional EC chunks.)

Components
• MON

• Monitor - knows the Cluster Map (=CRUSH Map
+ some other details)

• Can have more than one (they vote on
consistency via Paxos for high availability and
reliability).

• Talk to everything to distribute the Storage
Geometry, and arrange updates to it.

Components
• OSD

• Object Storage Device - stores blocks of data
(and metadata).

• Need at least three for resilience in default config.

• Talk to each other to agree on replica status,
check health.

• Talk to MONs to update Storage Geometry

OSD

OSD
OSD

OSD

MON

MON

MON

Heartbeat,
Peering,

Replication

Map consistency
(Paxos)

OSD status Map status

Autonomic functions in Ceph

OSD

OSD
OSD

OSD

MON

MON

MON
Client

(1 Get Map)

2 Calculate
Hash,

Placement

File1

3 Place 1st Copy
of each Chunk

4 OSDs create
additional replicas.

Writing a file to Ceph

OSD

OSD
OSD

OSD

MON

MON

MON
Client

(1 Get Map)

2 Calculate
Hash,

Placement

3 Retrieve chunks

File1,
Chunk 2File1,

Chunk 1

File1,
Chunk 1

File1,
Chunk 2

Reading a file from Ceph

Installing
• On RHEL (…SL…Centos…)

• Add ceph repo to all nodes in storage cluster.

• Install “admin node” (manages other nodes’
services).

• sudo yum update && sudo yum install ceph-deploy	

• Set up passwordless ssh between admin and
other nodes.

Installing (2)
• Create initial list of MONs:

• ceph-deploy new node1 node2 (etc)	

• Install/activate node types:

• ceph-deploy mon create node1	

• ceph-deploy osd prepare nodex:path/to/fs	

• ceph-deploy osd activate nodex

MON

OSD

Logical structure
• Partition global storage into “Pools”

• Can be just a logical division

• Can also enforce different permissions,
replication strategies, etc

• Ceph creates a default pool for you when you
install.

Placement Groups
• Pools contain Placement Groups (PGs).

• Like individual stripe sets for data.

• A given object is assigned to a PG for distribution.

• Automatically generated for you!

[ceph@node017 my-cluster]$ ceph pg map 0.1	
osdmap e68 pg 0.1 (0.1) -> up [1,2,0] acting [1,2,0]	
!

PG ID = Pool.PG

vector of OSD ids to stripe over
(first OSD in vector is master)

Examples

[ceph@node017 my-cluster]$ ceph -s	
 cluster 1738aad3-1413-42b8-9ef8-d3955da0af83	
 health HEALTH_OK	
 monmap e3: 3 mons at
{node017=10.141.101.17:6789/0,node018=10.141.101.18:6789/0,node019=10.141.101.19:6789/0},
election epoch 22, quorum 0,1,2 node017,node018,node019	
 osdmap e68: 3 osds: 3 up, 3 in	
 pgmap v64654: 488 pgs, 9 pools, 2048 MB data, 45 objects	
 24899 MB used, 115 GB / 147 GB avail	
 488 active+clean	
!
[ceph@node017 my-cluster]$ ceph osd lspools	
0 data,1 metadata,2 rbd,3 ecpool,4 .rgw.root,5 .rgw.control,6 .rgw,7 .rgw.gc,8 .users.uid,

Ceph “Status”

OSD and PG Status

MON Status
(note PAXOS election info)

List all pools in this Ceph Cluster
data is the default pool

metadata is also default (used by CephFS extension)
rbd created by Ceph Block Device extension

ecpool is a test erasure-encoded pool
remainder support Ceph Object Gateway (S3, Swift)

Extensions
• POSIX(ish) Filesystem CephFS

• Need another component - MDS (MetaData
Server).

• MDS handles the metadata heavy aspects of
being a POSIX filesystem.

• Can have more than one (they do failover and
load balancing).

OSD

OSD
OSD

OSD

MON

MON

MON

CephFS model

MDS

MDS

Client

cephfs
layer

Posix I/O

Cached
Metadata

Stored Metadata

File DataMap

Extensions
• Object Gateway (S3, Swift)

• Need another component - radosgw

• Provides HTTP(S) interface

• Maps Ceph Objects to S3/Swift style objects.

• Supports federated cloud storage.

Extensions
• Block Device

• Need another component - librbd

• Presents storage as a Block Device (stored as
4MB chunks on underlying Ceph Object Store)

• Interacts poorly with erasure-coded pool
backends (on writes).

Extensions

• Anything you want!

• librados has a well documented, public API

• All extensions are built on it.

• (I’m currently working on a GFAL2 plugin for it,
for example.)

Further Reading

• Sage Weil’s PhD Thesis: http://ceph.com/papers/
weil-thesis.pdf (2007)

• Ceph support docs: http://ceph.com/docs/master/

http://ceph.com/papers/weil-thesis.pdf
http://ceph.com/docs/master/

