Status of GridPP Cloud Sites

Adam Huffman

Agenda

- Imperial status
- Status of other sites
- •EGI Federated Cloud
- •Usage
- Moving to production
- •IPv6

Imperial Cloud Status

- New compute node in service (40 core, 256GB)
 - Attracts all new instances because the scheduler prefers free RAM
 - Benefits of Intel Turbo = ~0.2-0.3 GHz extra core speed, based on informal monitoring
- Total compute resources now **216 cores**, **704GB RAM**
- Development node (24 core, 256GB)
 - Currently being used for IPv6 testing
- Making more use of volumes (Cinder), for persistent storage
- Upgraded OpenStack to Icehouse
 - Component by component in-place upgrade now (mostly) achievable, with minimal downtime (cf. CERN blog post)
 - Upgrades included in CI testing by developers
 - API cleanups
 - Better IPv6 support

Imperial Cloud Status continued

- Still using Gluster for shared storage
 - Older hardware for Ceph problematic
 - Still plan to reinstate Ceph for long-term
- 2.5TB instance storage, 512GB volumes, 128GB images
- Database was becoming a bottleneck
 - Solved by removing old tokens (~1 million rows)
- Running mixture of CMS, ATLAS and LHCb jobs, plus local testing
- CMS using "Stealth Cloud" and Andrew Lahiff's glideinWMS

Imperial Cloud Plans

- Future plans:
 - Neutron networking
 - Ceilometer (accounting/monitoring)
 - » Will probably require dedicated database node
 - Docker (support limited at present)
 - Expansion...
- VMDIRAC (Simon Fayer & Daniela Bauer)
 - In testing at the moment
 - May need to use pre-release version owing to missing features in last public release (e.g. cloud-init)
 - Working on data management next
- Package building (cf. Fedora Infrastructure)

EGI Federated Cloud

- "a seamless grid of academic private clouds and virtualised resources, built around open standards and focusing on the requirements of the scientific community"
- Integration requirements (for OpenStack):
 - VOMS-enable Keystone installation and configuration
 - OCCI installation and configuration
 - Integration with accounting service APEL
 - Integration with VM Image Management infrastructure
 - Integration with information system
 - Registration of deployed services in GOCDB
- Both taken from EGI site

EGI Federated Cloud continued

- Necessitates change to Keystone, fundamental part of OpenStack (identity service), on which other services rely
- Instead of built-in server, use Apache with SSL enabled and mod_wsgi
 - Large performance impact
 - Makes debugging harder
- Serious bug in Keystone VOMS module
 - A lot of effort from Simon Fayer, including building a custom version of the VOMS library with extra debugging output
 - Eventually led to patch that fixed their handling of certificate chains
- Had to submit patches to support OpenStack Icehouse, for Keystone-VOMS and OCCI-OS
- Need a new BDII (didn't want to mess with existing ones)

EGI Federated Cloud continued

- Instructions for key parts (e.g. Keystone VOMS) very much skewed towards Debian
- Obscure configuration options that have no effect on normal operation can stymie FedCloud services e.g. Nova option for OCCI
- Accounting work ongoing
 - Current accounting code doesn't work on Icehouse and code is effectively abandoned (developer left in early 2013)
 - Intentions to use Ceilometer on OpenStack
 - » Some prototype code, not finished or ready for production
- Unclear if there are Puppet modules for these components (1 out of date Github repo)

EGI Federated Cloud continued

- Appears to have different motivations than GridPP
- 'Different pricing models under consideration' Models for Sustainability (under development)
- Unclear yet how to marry VO and FedCloud usage patterns
 - Maybe better to handle in parallel cf. Oxford plan

Cloud Work around GridPP

- RAL
- QMUL
- Lancs
- Oxford

RAL

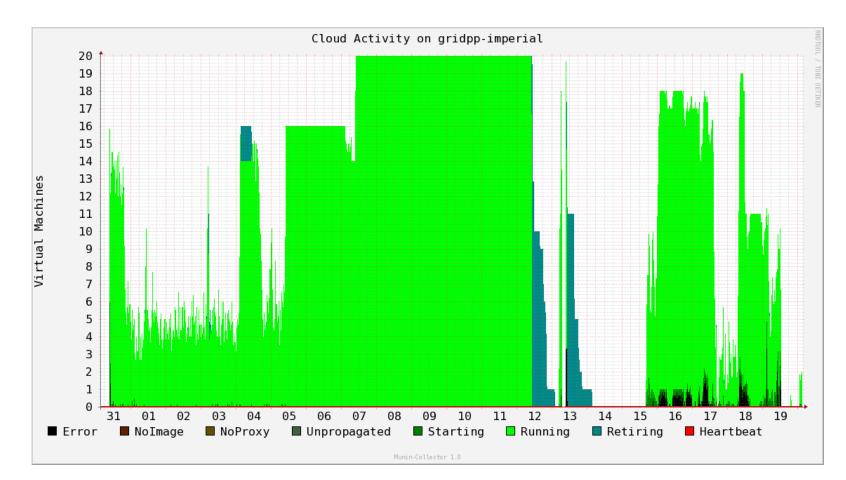
- Deploying OpenNebula
 - ~1,000 cores
 - ~1PB raw Ceph storage
- Initially private
- Funded by STFC, so primary use is for STFC/Scientific Computing Department projects (see Ian's talk)
- Will be closely coupled to the Tier 1, so bursting of unused resources will be possible
- Will also provide cloud endpoints for LHC VOs

Lancs

- Limited ongoing testing of VMWare
- Main focus on Vcycle and Vac (see Peter Love's talk)
- Aim to deploy more Vac factories and test Vcycle (see Andrew McNab's talk)

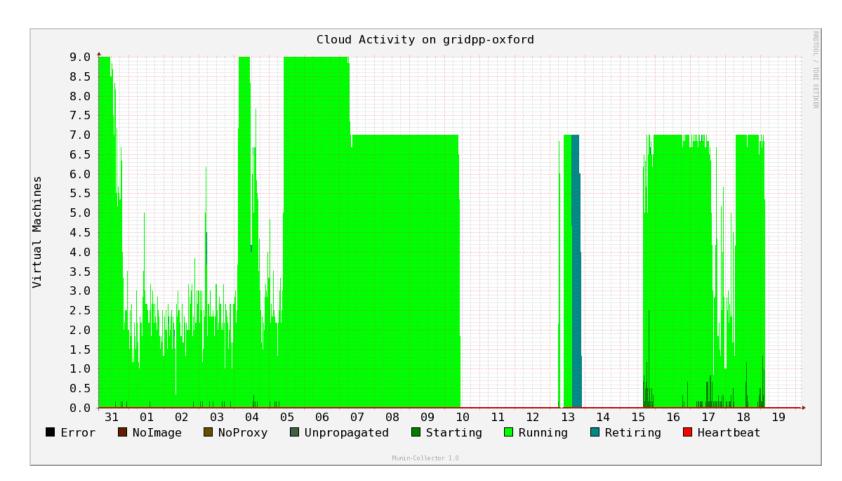
Oxford

- No change in existing cloud, running ATLAS jobs
- Installed Shoal on local Squid to avoid CVMFS thrashing at remote sites
- Now planning a new cloud to run in parallel, aiming to supplant current one in time
 - OpenStack Icehouse
 - Will add OCCI as step towards FedCloud integration
 - Hardware:
 - Dell R610 controller node, 16 cores, 24G
 - Network node running Neutron, 2 x 10G plus 4 x 1G NICs
 - Should mitigate network bottleneck caused by lack of multi-host support in Icehouse
 - Dell R510 storage node for Glance and block, Dell R510, 12 x 300G SAS
 - Mixture of new quad-core and old WNs as compute nodes

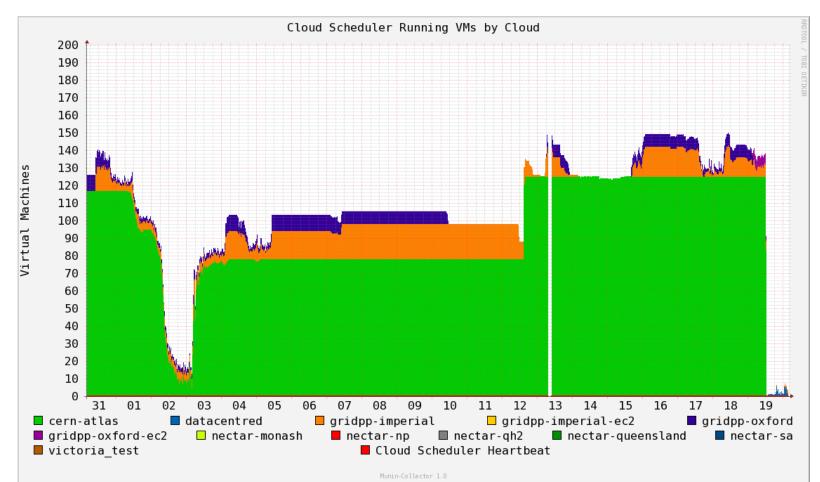

QMUL

- Running CloudStack
- Dell 1950 and PowerVault 3000 for storage
- Supermicro Twin Squared compute node
- Future plans:
 - EC2 does not work out of the box however there is a new project:
 - » https://github.com/BroganD1993/ec2stack
 There is an option to try LXC containers and Xen alongside KVM, using
 - different ZONEs.
 - CEPH / glusterfs file system instead of NFS
 - Based on usage, add more Twin Squared compute nodes
 - Add more storage

Cloud Usage


- Been useful for "real work" for quite a while now
- See Andrew Lahiff's talk for CMS information
- Using Simon Fayer and Daniela Bauer's "Stealth Cloud" at Imperial
 - By definition, CMS jobs running on this cloud aren't separate from normal grid jobs
- See Andrew McNab's talk for LHCb/Vcycle plots

Usage – ATLAS at Imperial


21/08/2014

Usage – ATLAS at Oxford

21/08/2014

ATLAS Cloud Usage

21/08/2014

Clouds in Production

- Bureaucracy needed as we move to production
- E.g. need to become a site registered in GOCDB
 - Procedures very much skewed towards grid sites (understandably)
 - In discussion with Jeremy about this
- There seems to be a conflation of certification as a site and certification in the federated cloud, though this may flow from the special case of 100%IT, which is the only test case that's completed so far
- Security questionnaire

Making better use of Clouds

- Wasted resources caused by flavours that are too large
 - Having a mix would be best from the sites' point of view
 - Eg. ATLAS uses 8 vCPUs, CMS uses 2 and Vcycle uses 1
 - How does this fit in with Grid multicore work?
- Dynamic quota handling to adapt to changing demand?
 - Can VO schedulers cope with this?
 - Current schedulers still don't cope with instances in the error state perfectly, though this has improved a lot
 - How would "demand" be quantified and communicated?
 - Sites monitoring turnover of instances/staleness?
 - Noticed that glideinWMS/CMS instances lingering a lot longer than ATLAS/Vcycle ones (may just be a default setting)
 - Cf. Andrew McNab's "target shares"

IPv6

- Appears to work straightforwardly on CERN OpenStack
- 'Officially' supported in nova-network
- Proposals to improve support in Neutron (which will be the main network service in the future)
- Testing at Imperial ongoing

Thanks

- Site informants:
 - Ian Collier
 - Kashif Mohammad
 - Robin Long/Peter Love
 - Dan Traynor