Probing beyond the Standard Model at Low Energy

Tim Chupp

University of Michigan
Ann Arbor

Face-on View

What we know

- The Standard Model of particles and forces
- QFT with radiative corrections
- Massive neutrinos
- Gravity weak and strong $(\mathrm{GR})=>$ dynamics
(we can send a satellite to Pluto!)
- Dark matter/Dark energy

- The universe is MATTER dominant What we don't know
- How neutrinos acquire mass
- Dirac/Higgs ($m_{v}<10^{-6} m_{e} ; m_{u} \sim m_{d} \sim 10^{-6} m_{t}$)
- What is THE dark matter/what is dark energy
- What made the universe MATTER dominant
- Baryogenesis

Where to look

- High energy, rare decays, exotic processes (astro)
- Muon g-2
- Precise SM predictions (with uncertainties
- 3.7σ difference of experiment and theory
- Beta-decay: neutron, nuclei
- Probe BSM through T violation
- Measure CKM element V_{ud}
- Permanent electric dipole moments
- SM predicts EDMs<<current sensitivity
- Note $\theta_{\text {QCD }}$ contribution (inexplicably small)

EDMs

$$
\vec{d}=\vec{r}\left(Q^{(\vec{r})} \quad m^{(\vec{r})) d V}=d \vec{J}\right.
$$

Put this in E and B fields

$$
H={ }^{-} \times \vec{B} \quad \vec{d} \times \vec{E}=\frac{\vec{J} \times \vec{B}}{\mathrm{P}_{\mathrm{e}}^{\prime} \mathrm{T}_{e}} \quad \frac{d \vec{J} \times \vec{E}}{\mathrm{P}_{\mathrm{o}}^{\prime} \mathrm{L}_{\mathrm{L}}} \text { CXP }^{\mathrm{L}^{\prime}}
$$

Standard-model EDMs are small

Vanish at 2-loops for quarks and 3-loops for leptons
Khriplovich, Zhitnitsky (1982), McKellar et al., (1987)

Pion-nucleon picture

EDMs probe TeV-scale "new" physics

$$
\mu \approx \frac{e \hbar}{2 m} \quad\left(\alpha=\frac{e^{2}}{\hbar c}\right)
$$

$m_{x} \sim 1 \mathrm{TeV}$ - LHC scale or ϕ is small

Baryon Asymmetry

 CP \longrightarrow Baryon Asymmetry \longrightarrow NEW PHYSICS (BSMP)Fact: There is more matter than antimatter

$$
\begin{aligned}
& n_{p} \quad n_{\bar{p}}=\frac{n_{p} n_{\bar{p}}}{n_{p}+n_{\bar{p}}} \text { few } 10^{10} \\
& \left(\text { WMAP/PLANCK, }\left[{ }^{4} \mathrm{He}\right]_{, \ldots . .}\right)
\end{aligned}
$$

How? A) Initial condition
B) Evolution from $\eta=0$

1) Baryon number violation
2) CP Violation

3) Rapid expansion (non-equilibrium)

Nobel Peace Prize 1975
Another possibility: CP violation in neutrinos + "seesaw"

Electroweak Baryongenesis

Kuzmin, Rubakov, Shaposhnikov 87; Cohen, Kaplan, Nelson 90\&95

1. First-order EW PT produces expanding bubbles.
2. C and CP violation near the bubble wall induce asymmetries.
3. Electroweak physics (sphalerons) convert this to a baryons

$$
V(H, T),-\frac{1}{2}\left(\mu^{2}-i T^{2}\right) H^{2}-\gamma T H^{3}+\frac{\lambda}{4} H^{4}
$$

DOESN'T WORK:

1. The EW PT is not first order for $m_{h}=125 \mathrm{GeV}$.

Kajantie, Laine, Rummukainen, Shaposhnikov 98
From D. Morrissey
2. Not enough effective CP violation.

Gavela, Hernandez, Orloff, Pene'94; Huet + Sather '95

EDM's

TC, MJ Ramsey Musolf Phys. Rev. C 91035502 (2015)
Upcoming Review: TC, Fierlinger, Ramsey-Musolf, Singh

Paramagnetic atoms ($\vec{L} \times \vec{S}$ coupling) Cs, Tl, YbF, ThO

Diamagnetic atoms: Schiff moment $\mathrm{Xe}, \mathrm{Hg}, \mathrm{TlF} \quad \vec{S}=\frac{1}{10}\left\langle r^{2} \vec{r}_{p}\right\rangle-\frac{1}{6 Z}\left\langle r^{2}\right\rangle\left\langle\vec{r}_{p}\right\rangle$

Pioneers - experiment

Normal Ramsey \& Ed Purcel (neutron)
\longrightarrow Norval Fortson, Blayne Heckel (${ }^{129} \mathrm{Xe},{ }^{199} \mathbf{H g}$)
Adelberger/Heckel
Pat (P.G.H.) Sandars (Cs, Xe ${ }^{\mathrm{m}}$, TlF) \longrightarrow Ed Hinds (TlF, YbF)

Gene Commins (Tl)
\longrightarrow Larry Hunter (Cs)
\longrightarrow deMille, Doyle, Gabrielse (ThO)

System	Year/ref	Result	
Paramagnetic systems			
Cs	1989 [33]	$\begin{aligned} & d_{A}=(-1.8 \pm 6.9) \times 10^{-24} \\ & d_{e}=(-1.5 \pm 5.6) \times 10^{-26} \end{aligned}$	$\begin{aligned} & \mathrm{e}-\mathrm{cm} \\ & \mathrm{e}-\mathrm{cm} \end{aligned}$
Tl	2002 [9]	$\begin{aligned} & d_{A}=(-4.0 \pm 4.3) \times 10^{-25} \\ & d_{e}=(\quad 6.9 \pm 7.4) \times 10^{-28} \end{aligned}$	$\begin{aligned} & \mathrm{e}-\mathrm{cm} \\ & \mathrm{e}-\mathrm{cm} \end{aligned}$
YbF	2011 [8]	$d_{e}=(-2.4 \pm 5.9) \times 10^{-28}$	e-cm
ThO	2014 [7]	$\begin{aligned} & \omega^{\mathcal{N E}}=2.6 \pm 5.8 \\ & d_{e}=(-2.1 \pm 4.5) \times 10^{-29} \\ & C_{S}=(-1.3 \pm 3.0) \times 10^{-9} \end{aligned}$	$\underset{\mathrm{e}-\mathrm{cm}}{\mathrm{mrad} / \mathrm{s}}$
Diamagnetic systems			
${ }^{199} \mathrm{Hg}$	2006 [5]	$d_{A}=(0.49 \pm 1.5) \times 10^{-29}$	e-cm
${ }^{129} \mathrm{Xe}$	2001 [34]	$d_{A}=(0.7 \pm 3) \times 10^{-27}$	e-cm
TlF	2000 [35]	$d=(-1.7 \pm 2.9) \times 10^{-23}$	e-cm
neutron	2006 [4]	$d_{n}=(0.2 \pm 1.7) \times 10^{-26}$	e-cm

Stuart Freedman

Octupole Enhancements Intrinsic (body-frame) moment Polarizabitliy

NH_{3}
$\quad|a\rangle$

$$
\left.\left.\right|_{+}\right\rangle=\frac{1}{\sqrt{2}}(|a\rangle+|b\rangle)
$$

$$
\left\rangle=\frac{1}{\sqrt{2}}(|a\rangle \quad|b\rangle)\right.
$$

$$
S \mu \frac{\langle+| r^{2} \cos | \rangle}{E_{+} E} \frac{{ }_{2}{ }_{3}^{2} A^{2 / 3} r_{0}^{3}}{E_{+} E}
$$

Nuclei with Octupole Deformation/Vibration

(Haxton \& Henley; Auerbach, Flambaum, Spevak; Engel et al., Hayes \& Friar, etc.)

$$
S \mu \frac{\langle+| r^{2} \cos | \rangle}{E_{+} E} \frac{{ }_{2}^{2} A^{2 / 3} r_{0}^{3}}{E_{+} E}
$$

		${ }^{223} \mathrm{Rn}$	${ }^{223} \mathrm{Ra}$	${ }^{225} \mathrm{Ra}$		${ }^{223} \mathrm{Fr}$
${ }^{129} \mathrm{Xe}$	${ }^{199} \mathrm{Hg}$					
$\mathrm{t}_{1 / 2}$	23.2 m	11.4 d	14.9 d	22 m		
I	$7 / 2$	$3 / 2$	$1 / 2$	$3 / 2$	$1 / 2$	$1 / 2$
ΔE th (keV)	37^{*}	170	47	75		
$\Delta E \exp (\mathrm{keV})$	-	50.2	55.2	160.5		
$10^{11} S\left(\mathrm{e}-\mathrm{fm}^{3}\right)$	375	150	115	185	0.6	-0.75
$10^{28} d_{A}(\mathrm{e}-\mathrm{cm})$	1250	1250	940	1050	0.3	2.1

Ref: Dzuba PRA66, 012111 (2002) - Uncertainties of 50\% *Based on Woods-Saxon Potential
\dagger Nilsson Potential Prediction is 137 keV

NOTES:

Ocutpole Enhancements
Engel et al. agree with Flambaum et al.

Even octupole vibrations enhance S (Engel, Flambaum\& Zelevinsky)

Search for EDM of ${ }^{225} \mathrm{Ra}$ at Argonne

Status and Outlook

- First atom trap of radium realized

Guest et al. Phys Rev Lett (2007)

- Search for EDM of ${ }^{225}$ Ra in 2009
- Improvements will follow

Nuclear Spin = $1 / 2$
Electronic Spin = 0
$\mathrm{t}_{1 / 2}=15$ days
Oven:
${ }^{225} \mathrm{Ra}(+\mathrm{Ba})$
${ }^{225} \mathrm{Ra}$

Why trap ${ }^{225}$ Ra atoms

- Large enhancement:

$$
\text { EDM (Ra) / EDM (Hg) ~ } 200-2,000
$$

- Efficient use of the rare ${ }^{225} \mathrm{Ra}$ atoms
- High electric field (> $100 \mathrm{kV} / \mathrm{cm}$)
- Long coherence times (~ 100 s)
- Negligible " $v \times$ E" systematic effect

Magneto-optical

First Ra-225 EDM Measurement

Phys. Rev. Lett. 114, 233002: $\mid d($ Ra-225 $) \mid<5 \times 10^{-22}$ e cm (95\%)

- all systematic effects estimated to be $<10^{-25} \mathrm{e} \mathrm{cm}$ (goal)
- first EDM measurement made in a laser trap
- first EDM measurement of an octupole-deformed species

${ }^{221} \mathrm{Rn}$ Enhancement

${ }^{223} \mathrm{Rn}:$ TBD

Radon-EDM Experiment

Funding: NSF-Focus Center, DOE, NRC (TRIUMF), NSERC

To Vacuum/gas recovery

19

Spin-Exchange Optical Pumping

- Optically pump the Rb with circularly polarized laser light.
- Spin-exchange collisions transfer the polarization to the ${ }^{3} \mathrm{He},{ }^{129} \mathrm{Xe}$, radon nuclei.

$$
\mathrm{m}_{\mathrm{s}}=-1 / 2 \quad \mathrm{~m}_{\mathrm{s}}=+1 / 2
$$

Binary Collision: $\tau \sim 10^{-12} \mathrm{sec}$.

Nuclear Orientation of Radon Isotopes by Spin-Exchange Optical Pumping

M. Kitano, ${ }^{(3)}$ F. P. Calaprice, M. L. Pitt, J. Clayhold, W. Happer, M. Kadar-Kallen, and M. Musolf

$E_{Y}(\mathrm{keV})$	Spin sequence	Anisotropy R	$R-1$ (\%)
337	$\left(\frac{1}{2}-\right)-\left(\frac{5}{2}-\right)$	0.903(14)	-9.7 ± 1.4
408		$1.009(7)$	$+0.9 \pm 0.7$
689	$\frac{5}{2}, \frac{7}{2}-{ }^{\frac{3}{2}}$	$1.079(22)$	$+7.9 \pm 2.2$
745	($\frac{1}{2}^{-}$) $-\frac{9^{-}}{}{ }^{-}$	1.129(14)	$+12.9 \pm 1.4$

Polarization and relaxation of radon

E. R. Tardiff, ${ }^{1}$ J. A. Behr, ${ }^{3}$ T. E. Chupp, ${ }^{1}$ K. Gulyuz, ${ }^{4}$ R. S. Lefferts, ${ }^{4}$ W. Lorenzon, ${ }^{2}$ S. R.

Nuss-Warren, ${ }^{1}$ M. R. Pearson, ${ }^{3}$ N. Pietralla, ${ }^{4}$ G. Rainovski, ${ }^{4}$ J. F. Sell, ${ }^{4}$ and G. D. Sprouse ${ }^{4}$
${ }^{1}$ FOCUS Center, University of Michigan Physics Department, 450 Church St., Ann Arbor 48109-1040, USA
${ }^{9}$ University of Michigan Physics Department, 450 Charch St., Ann Arbor 48109-1040, USA
${ }^{3}$ TRIUMF, 4004 Westbrook Mall, Vancowver V6T 2A3, Canada
4 SUNY Stony Brook Department of Physics and Astronomy, Stony Brook 11794-3800, USA
(Dated: December 6, 2006)

γ-ray energy-time matrix from the β decay of 1.2 billion ${ }^{223} \mathrm{Rn}$ nuclei from an initial 8×10^{10} nuclei located in the EDM cell surrounded by a ring of eight GRIFFIN detectors in the forward position.

- Nuclear Data Sheets (2001)

Two-photon magnetometry with ${ }^{221 / 223} \mathrm{Rn}(\mathrm{J}=7 / 2)$

S. Degenkolb

Radon-EDM Prospects

Global analysis: TC, Ramsey Musolf PRC 91035502 (2015) Goal $\sim 10^{-26} \mathrm{e}-\mathrm{cm}$

Facility	TRIUMIF-ISAC	FRIB $\left.{ }^{(223} \mathrm{Th}\right)$
Rate	$2.5 \times 10^{7} \mathrm{~s}^{-1}$	$1 \times 10^{9} \mathrm{~s}^{-1}$
\# atoms	3.5×10^{10}	1.4×10^{12}
$\sigma_{\text {EDM }}(100 \mathrm{~d})$	$2 \times 10^{-27} \mathrm{e}-\mathrm{cm}$	$3 \times 10^{-28} \mathrm{e}-\mathrm{cm}$
199 Hg equivalent	$4 \times 10^{-28 / 29} \mathrm{e}-\mathrm{cm}$	$6 \times 10^{-29 / 30} \mathrm{e}-\mathrm{cm}$

Assumptions: $\mathrm{E}=10 \mathrm{kV} / \mathrm{cm}, \mathrm{T}_{2}=15 \mathrm{~s}, \mathrm{~A}=0.2,25 \%$ duty factor

$$
\sigma_{d} \approx \frac{1}{2 E} \frac{\hbar}{A T_{2}} \frac{1}{\sqrt{N_{\gamma}}}
$$

Summary

EDMs probe TeV -scale "new" physics
CP \longrightarrow Baryon Asymmetry \longrightarrow NEW PHYSICS (BSMP)
Measurements in NEW SYSTEMS are essential
Octupole collectivity enhances Schiff moments: ${ }^{225} \mathrm{Ra}$ and ${ }^{221 / 223} \mathrm{Rn}$ underway $\ldots .10^{-25 / 26} \mathrm{e}-\mathrm{cm}$

THANK YOU!
 and

Happy transition(s) PETER!

