Probing beyond the Standard Model at Low Energy

Tim Chupp University of Michigan Ann Arbor

Reflections on the Atomic Nucleus

What we know

- The Standard Model of particles and forces
 - QFT with radiative corrections
 - Massive neutrinos
- Gravity weak and strong (GR) => dynamics (we can send a satellite to Pluto!)
 Dark matter/Dark energy
- The universe is MATTER dominant
 What we don't know
- How neutrinos acquire mass
 - Dirac/Higgs($m_v < 10^{-6} m_e; m_u \sim m_d \sim 10^{-6} m_t$)
- What is *THE* dark matter/what is dark energy
- What made the universe MATTER dominant
 - Baryogenesis

Where to look

- High energy, rare decays, exotic processes (astro)
- Muon g-2
 - Precise SM predictions (with uncertainties
 - -3.7σ difference of experiment and theory
- Beta-decay: neutron, nuclei
 - Probe BSM through T violation
 - Measure CKM element V_{ud}
- Permanent electric dipole moments
 - SM predicts EDMs<<current sensitivity
 - Note θ_{QCD} contribution (inexplicably small)

EDMs

 $\vec{d} = \grave{0} \vec{r} (\Gamma_Q(\vec{r}) - \Gamma_m(\vec{r})) dV = d\vec{J}$

Put this in *E* and *B* fields

$$H = -\vec{n} \times \vec{B} - \vec{d} \times \vec{E} = -\vec{n} \vec{J} \times \vec{B} - \vec{d} \vec{J} \times \vec{E}$$
$$\vec{P_e} T_e - \vec{P_o} T_o$$

6

Reflections on the Atomic Nucleus

Standard-model EDMs are small

Vanish at 2-loops for quarks and 3-loops for leptons Khriplovich, Zhitnitsky (1982), McKellar et al., (1987)

EDMs probe TeV-scale "new" physics

 $m_{x} \sim 1 \text{ TeV} - \text{LHC}$ scale or ϕ is small

Baryon Asymmetry $CP \longrightarrow Baryon Asymmetry \longrightarrow NEW PHYSICS (BSMP)$

Fact: There is more matter than antimatter

$$n_{p} \stackrel{1}{n_{\overline{p}}} n_{\overline{p}} \stackrel{h}{=} \frac{n_{p} - n_{\overline{p}}}{n_{p} + n_{\overline{p}}} \gg few \quad 10^{-10}$$
(WMAP/PLANCK, [⁴He]_{...})

- How? A) Initial condition
 - B) Evolution from $\eta=0$
 - 1) Baryon number violation
 - 2) CP Violation

3) Rapid expansion (non-equilibrium)

Nobel Peace Prize 1975

Another possibility: CP violation in neutrinos + "seesaw"

Electroweak Baryongenesis

Kuzmin, Rubakov, Shaposhnikov 87; Cohen, Kaplan, Nelson 90&95

- 1. First-order EW PT produces expanding bubbles.
- 2. C and CP violation near the bubble wall induce asymmetries.
- 3. Electroweak physics (sphalerons) convert this to a baryons

EDM's

Pioneers - experiment

Normal Ramsey & Ed Purcel (neutron)

→ Norval Fortson, Blayne Heckel (¹²⁹Xe, ¹⁹⁹Hg)

Pat (P.G.H.) Sandars (Cs, Xe^m, TlF) → Ed Hinds (TlF, YbF)

Gene Commins (Tl) → Larry Hunter (Cs) → deMille, Doyle, Gabrielse (ThO) → Zheng-Tian Lu (²²⁵Ra)

	System	Year/ref	Result		
	Paramagnetic systems				
	Cs	1989 [33]	$d_A = (-1.8 \pm 6.9) \times 10^{-24}$	e-cm	
			$d_e = (-1.5 \pm 5.6) \times 10^{-26}$	e-cm	
	Tl	2002 [9]	$d_A = (-4.0 \pm 4.3) \times 10^{-25}$	e-cm	
			$d_e = (-6.9 \pm 7.4) \times 10^{-28}$	e-cm	
	YbF	2011 [8]	$d_e = (-2.4 \pm 5.9) \times 10^{-28}$	e-cm	
	ThO	2014 [7]	$\omega^{\mathcal{N}E} = 2.6 \pm 5.8$	mrad/s	
			$d_e = (-2.1 \pm 4.5) \times 10^{-29}$	e-cm	
			$C_S = (-1.3 \pm 3.0) \times 10^{-9}$		
	Diamagnetic systems				
	¹⁹⁹ Hg	2006 [5]	$d_A = (0.49 \pm 1.5) \times 10^{-29}$	e-cm	
	¹²⁹ Xe	2001 [34]	$d_A = (0.7 \pm 3) \times 10^{-27}$	e-cm	
	TlF	2000 [35]	$d = (-1.7 \pm 2.9) \times 10^{-23}$	e-cm	
)	neutron	2006 [4]	$d_n = (0.2 \pm 1.7) \times 10^{-26}$	e-cm	

Octupole Enhancements Intrinsic (body-frame) moment Polarizabitliy

NH₃ (see Feynman vol 3.)

Reflection Symmetry

Nuclei with Octupole Deformation/Vibration

(Haxton & Henley; Auerbach, Flambaum, Spevak; Engel et al., Hayes & Friar, etc.)

Search for EDM of ²²⁵Ra at Argonne

First Ra-225 EDM Measurement

Phys. Rev. Lett. 114, 233002: $|d(\text{Ra-225})| < 5 \times 10^{-22} e \text{ cm} (95\%)$

- all systematic effects estimated to be <10⁻²⁵ e cm (goal)
- first EDM measurement made in a laser trap
- first EDM measurement of an octupole-deformed species

Radon-EDM Experiment

TRIUMF E929 Spokesmen: Timothy Chupp & Carl Svensson

Funding: NSF-Focus Center, DOE, NRC (TRIUMF), NSERC

Reflections on the Atomic Nucleus

Spin-Exchange Optical Pumping

- Optically pump the Rb with circularly polarized laser light.
- Spin-exchange collisions transfer the polarization to the ³He, ¹²⁹Xe, radon nuclei.

Nuclear Orientation of Radon Isotopes by Spin-Exchange Optical Pumping

E, (keV)	Spin sequence	Anisotropy R	R-1 (%)
337	$(\frac{1}{2}^{-}) - (\frac{5}{2}^{-})$	0.903(14)	-9.7 ± 1.4
408	$(\frac{5}{2}^{-}) - \frac{9}{2}^{-}$	1.009(7)	$+0.9 \pm 0.7$
689	$\frac{5}{2}$, $\frac{7}{2}$ - $\frac{5}{2}$ -	1.079(22)	$+7.9 \pm 2.2$
745	$(\frac{1}{2}) - \frac{9}{2}$	1.129(14)	$+12.9 \pm 1.4$

M. Kitano, (a) F. P. Calaprice, M. L. Pitt, J. Clayhold, W. Happer, M. Kadar-Kallen, and M. Musolf

Polarization and relaxation of radon

E. R. Tardiff,¹ J. A. Behr,³ T. E. Chupp,¹ K. Gulyuz,⁴ R. S. Lefferts,⁴ W. Lorenzon,² S. R. Nuss-Warren,¹ M. R. Pearson,³ N. Pietralla,⁴ G. Rainovski,⁴ J. F. Sell,⁴ and G. D. Sprouse⁴

¹FOCUS Center, University of Michigan Physics Department, 450 Church St., Ann Arbor 48109-1040, USA ²University of Michigan Physics Department, 450 Church St., Ann Arbor 48109-1040, USA ³TRIUMF, 4004 Westbrook Mall, Vancouver V6T 2A3, Canada ⁴SUNY Stony Brook Department of Physics and Astronomy, Stony Brook 11794-3800, USA (Dated: December 6, 2006)

Fit for Γ_2 (T_a=300°K)_: 0.05 Hz (uncoated); 0.03 Hz (coated)s Use 2.5x10⁻²¹ cm²

Genat-4 simulations by Evan Rand γ -ray energy-time matrix from the β decay of 1.2 billion ²²³Rn nuclei from an initial 8×10^{10} nuclei located in the EDM coll surrounded by a visc of sight ODISTIN 8×10^{10} nuclei located in the EDM cell surrounded by a ring of eight GRIFFIN detectors in the forward position.

Known Level Structure of ²²³Fr

- Nuclear Data Sheets (2001)

Two-photon magnetometry with ^{221/223}Rn (J=7/2) S. Degenkolb

Radon-EDM Prospects

Global analysis: TC, Ramsey Musolf PRC **91** 035502 (2015) Goal ~10⁻²⁶ e-cm

Facility	TRIUMF-ISAC	FRIB(²²³ Th)
Rate	2.5x10 ⁷ s ⁻¹	1x10 ⁹ s ⁻¹
# atoms	3.5×10^{10}	1.4×10^{12}
σ_{EDM} (100 d)	2x10 ⁻²⁷ e-cm	3x10 ⁻²⁸ e-cm
¹⁹⁹ Hg equivalent	4x10 ^{-28/29} e-cm	6x10 ^{-29/30} e-cm

Assumptions: E=10 kV/cm, T_2 =15 s, A=0.2, 25% duty factor

$$\sigma_d \approx \frac{1}{2E} \frac{\hbar}{AT_2} \frac{1}{\sqrt{N_{\gamma}}}$$

Reflections on the Atomic Nucleus

Summary

EDMs probe TeV-scale "new" physics

 $CP \longrightarrow Baryon Asymmetry \longrightarrow NEW PHYSICS (BSMP)$

Measurements in NEW SYSTEMS are essential

Octupole collectivity enhances Schiff moments: ²²⁵Ra and ^{221/223}Rn underway 10^{-25/26} e-cm

THANK YOU! and Happy *transition(s)* PETER!

Reflections on the Atomic Nucleus