New developments in nuclear DFT

Jacek Dobaczewski University of York, University of Jyväskylä, University of Warsaw

> Reflections on the atomic nucleus University of Liverpool 28-30 July 2015

Jacek Dobaczewski

JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

Outline

- **1. Introduction: the nuclear EDF**
- 2. What EDF can do for us?
- 3. Precision frontier
- 4. Effective theory for low-energy nuclear structure
- 5. *Ab initio* derivation of model EDFs
- 6. Conclusions

Standard EDF generators

• Gogny*

$$V(ec{r}_1ec{r}_2;ec{r}_1'ec{r}_2') = \delta(ec{r}_1-ec{r}_1')\delta(ec{r}_2-ec{r}_2')V(ec{r}_1-ec{r}_2),$$

where,

$$V(ec{r_1}-ec{r_2}) = \sum_{i=1,2} e^{-(ec{r_1}-ec{r_2})^2/\mu_i^2} imes (W_i + B_i P_\sigma - H_i P_ au - M_i P_\sigma P_ au)
onumber \ + t_3(1+P_\sigma) \delta(ec{r_1}-ec{r_2})
ho^{1/3} \left[rac{1}{2} (ec{r_1}+ec{r_2})
ight].$$

 $P_{\sigma} = \frac{1}{2}(1 + \vec{\sigma}_1 \cdot \vec{\sigma}_2)$ and $P_{\tau} = \frac{1}{2}(1 + \vec{\tau}_1 \cdot \vec{\tau}_2)$ are, respectively, the spin and isospin exchange operators of particles 1 and 2, $\rho(\vec{r})$ is the total density of the system at point \vec{r} , and $\mu_i = 0.7$ and $1.2 \,\mathrm{fm}$, W_i , B_i , H_i , M_i , and t_3 are parameters.

• Skyrme*

$$\begin{split} V(\vec{r}_{1}\vec{r}_{2};\vec{r}_{1}'\vec{r}_{2}') &= \left\{ t_{0}(1+x_{0}P^{\sigma}) + \frac{1}{6}t_{3}(1+x_{3}P^{\sigma})\rho^{\alpha}\left(\frac{1}{2}(\vec{r}_{1}+\vec{r}_{2})\right) \right. \\ &+ \frac{1}{2}t_{1}(1+x_{1}P^{\sigma})[\vec{k'}^{*2}+\vec{k}^{2}] + t_{2}(1+x_{2}P^{\sigma})\vec{k'}^{*}\cdot\vec{k} \right\} \delta(\vec{r}_{1}-\vec{r}_{1}')\delta(\vec{r}_{2}-\vec{r}_{2}')\delta(\vec{r}_{1}-\vec{r}_{2}), \\ &\text{where the relative-momentum operators read } \hat{\vec{k}} = \frac{1}{2i}\left(\vec{\nabla}_{1}-\vec{\nabla}_{2}\right), \hat{\vec{k}'} = \frac{1}{2i}\left(\vec{\nabla}_{1}'-\vec{\nabla}_{2}'\right). \\ &\text{*We omit the spin-orbit and tensor terms for simplicity.} \end{split}$$

What EDF can do for us?

Jacek Dobaczewski

JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

Nuclear binding energies (masses)

Jacek Dobaczewski

JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

2009

152503

102,

ett.

Kev.

et

Goriely

Ś

First 2⁺ excitations of even-even nuclei

Giant monopole resonances

P. Veselý, et al., C 86, 024303 (2012)

8/25

2010)

34309

Spectroscopy in the nobelium region

Y. Shi, J.D., P.T. Greenleees, Phys. Rev. C89, 034309 (2014)

Jacek Dobaczewski

VERS WARS

JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

ISB corrections to the Fermi transitions in T=1/2 mirrors

DFT results from: W. Satuła, J. Dobaczewski, W. Nazarewicz, and M. Rafalski, Phys. Rev. C86, 054314(2012).

SM+WS results from: N. Severijns, M. Tandecki, T. Phalet, and I. S. Towner, Phys. Rev. C **78**, 055501 (2008).

Jacek Dobaczewski

JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

Precision frontier

Jacek Dobaczewski

JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

Propagation of uncertainties

UNIVERSITY OF JYVÄSKYLÄ

Exact model

Inaccurate model

78, 034306 (2008) Rev. Phys. ovanen, et al.,

Exact model

Jacek Dobaczewski

JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

Effective theory for low-energy nuclear structure

Jacek Dobaczewski

JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

Fig. 4. (a) Chiral EFT for nuclear forces. (b) Improvement in neutron–proton phase shifts shown by shaded bands from cutoff variation at NLO (dashed), N²LO (light), and N³LO (dark) compared to extractions from experiment (points) [31]. The dashed line is from the N³LO potential of Ref. [20].

Jacek Dobaczewski

UNIVERSITY of York

JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

Zero-range vs. regularized finite-range pseudopotentials and functionals

 Zero range:
 B.G. Carlsson et al., Phys. Rev. C 78, 044326 (2008)

 F. Raimondi et al., Phys. Rev. C 83, 054311 (2011)

$$\hat{V}_{\tilde{n}\tilde{L},v_{12}S}^{\tilde{n}'\tilde{L}'} = rac{1}{2} i^{v_{12}} \left(\left[\left[K_{\tilde{n}'\tilde{L}'}'K_{\tilde{n}\tilde{L}}
ight]_{S} \hat{S}_{v_{12}S}
ight]_{0} + (-1)^{v_{12}+S} \left[\left[K_{\tilde{n}\tilde{L}}'K_{\tilde{n}'\tilde{L}'}
ight]_{S} \hat{S}_{v_{12}S}
ight]_{0}
ight) \\ imes \left(1 - \hat{P}^{M} \hat{P}^{\sigma} \hat{P}^{\tau}
ight) \delta(\vec{r}\,_{1}' - \vec{r}_{1}) \delta(\vec{r}\,_{2}' - \vec{r}_{2}) \delta(\vec{r}_{1} - \vec{r}_{2}).$$

Finite range:

F. Raimondi et al., J. Phys. G 41, 055112 (2014)

$$egin{aligned} \hat{V}_{ ilde{n} ilde{L},v_{12}S}^{ ilde{n}' ilde{L}', ilde{t}} &= & rac{1}{2} i^{v_{12}} \left(igg[ig[K_{ ilde{n}' ilde{L}'}K_{ ilde{n} ilde{L}} ig]_{S} \, \hat{S}_{v_{12}S} ig]_{0} + (-1)^{v_{12}+S} \left[ig[K_{ ilde{n} ilde{L}}'K_{ ilde{n}' ilde{L}'} ig]_{S} \, \hat{S}_{v_{12}S} ig]_{0}
ight) \ & imes \left(\hat{P}^{ au} ig)^{ar{t}} \left(1 - \hat{P}^{M} \hat{P}^{\sigma} \hat{P}^{ au}
ight) \delta(ec{r}_{1}' - ec{r}_{1}) \delta(ec{r}_{2}' - ec{r}_{2}) g_{a}(ec{r}_{1} - ec{r}_{2}). \end{aligned}$$

Numbers of terms of the finiterange pseudopotential at different orders up to N³LO. In the second, third, and fourth column, numbers of central ($\tilde{S} = 0$), SO ($\tilde{S} = 1$), and tensor ($\tilde{S} = 2$) terms, respectively, are displayed.

Order	$ ilde{S}=0$	$ ilde{S}=1$	$ ilde{S}=2$	Total
0	4	0	0	4
2	8	2	4	14
4	16	4	10	30
6	24	8	20	52
N ³ LO	52	14	34	100

Local regularized pseudopotentials vs. Gogny

JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

Jacek Dobaczewski

JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

The goal is to provide an *ab initio* derivation within a certain class of model EDFs $\tilde{E}[\rho]$:

$$ilde{E}\left[
ho
ight] = \sum\limits_{i=1}^m C^i V_i\left[
ho
ight],$$

where C^{i} are coupling constants and $V_{i}[\rho]$ are the EDF generators.

Instead of probing the system with all possible one-body potentials it is enough to probe it within the finite set of the EDF generators $-\hat{V}_j$, that is, to solve the constrained variational equation,

$$\delta E' = \delta \langle \Psi | \hat{H} - \sum\limits_{j=1}^m \lambda^j \hat{V}_j | \Psi
angle = 0,$$

for a suitable set of values of a finite number of Lagrange multipliers λ^i , which is perfectly manageable a task.

Solution of this equation gives us the exact ground-state energies $E(\lambda^j)$ and one-body non-local densities $\rho_{\lambda^j}(r_1, r_2)$, both as functions (not functionals!) of the Lagrange multipliers λ^j . Then we adjust the EDF coupling constants C^i so as to have,

$$E(\lambda^j) = \sum\limits_{i=1}^m C^i V_i \left[
ho_{\lambda^j}
ight] .$$

Jacek Dobaczewski

JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

			t=0	t = 1
	$C_t^ ho$	$(MeV fm^3)$	-605.41(16)	509(3)
S1Se	$C_t^{\Delta ho}$	$(MeV fm^5)$	-74.82(12)	41(2)
	$C_t^{ au}$	$(MeV fm^5)$	79.73(16)	-98(2)

Table 1: Gogny-force D1S ground-state energies E_{G} (b) compared to energies \boldsymbol{E} (c) calculated using the Skyrme EDF S1Se.

	E_G	$oldsymbol{E}$	δE	$\delta E/ E $	$\delta E/\Delta E$
(a)	(b)	(c)	(d)	(e)	(f)
16 O	-129.626	-128.83(6)	0.79	0.61%	13
⁴⁰ Ca	-344.663	-344.34(6)	0.32	0.09%	5
⁴⁸ Ca	-416.829	-419.36(7)	-2.53	-0.61%	-37
⁵⁶ Ni	-483.820	-485.83(7)	-2.01	-0.42%	-29
⁷⁸ Ni	-640.598	-642.99(13)	-2.39	-0.37%	-18
$^{100}\mathrm{Sn}$	-830.896	-832.60(10)	-1.70	-0.20%	-18
$^{132}\mathrm{Sn}$	-1103.246	-1107.17(15)	-3.93	-0.36%	-26
208 Pb	-1638.330	-1641.26(16)	-2.93	-0.18%	-18
rms	n.a.	n.a.	2.34	0.40%	22
Jacek	Dobaczewski	NERS,			

UNIVERSITY OF IYVÄSKYLÄ

			t=0	t = 1
	$C_t^ ho$	$({ m MeVfm^3})$	-605.41(16)	509(3)
S1Se	$C_t^{\Delta ho}$	$(MeV fm^5)$	-74.82(12)	41(2)
	$C_t^ au$	$({ m MeVfm^5})$	79.73(16)	-98(2)

Table 2: Gogny-force D1S ground-state radii \mathbf{R}_{G} (b) compared to radii \mathbf{R} (c) calculated using the Skyrme EDF S1Se.

	R_G	R	δR	$\delta R/R$	$\delta R/\Delta R$
(a)	(b)	(c)	(d)	(e)	(f)
16 O	2.6689	2.6350(7)	-0.0339	-1.27%	-48
40 Са	3.4117	3.3860(8)	-0.0257	-0.75%	-31
⁴⁸Ca	3.4423	3.4347(10)	-0.0076	-0.22%	- 8
⁵⁶ Ni	3.6773	3.6781(11)	0.0008	0.02%	1
⁷⁸ Ni	3.9070	3.9222(10)	0.0151	0.39%	16
$^{100}\mathrm{Sn}$	4.4070	4.4118(12)	0.0048	0.11%	4
$^{132}\mathrm{Sn}$	4.6530	4.6694(11)	0.0164	0.35%	15
208 Pb	5.4365	5.4535(12)	0.0170	0.31%	14
rms	n.a.	n.a.	0.0183	0.57%	22

Conclusions

- 1. Nuclear DFT provides us with one of the most spectacularly successful approaches in nuclear physics. Based on a dozen-odd parameters, nuclear DFT fairly well describes thousands of experimental data
- 2. Currently available nuclear functionals have reached their limits of applicability. To gain progress, extensions/modifications thereof are mandatory.

Thank you

Jacek Dobaczewski

JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

