

Nuclear Physics with Ion Traps

Juha Äystö Helsinki Institute of Physics, Helsinki, Finland

Subjects:

Penning and Paul traps as a novel approach to precision studies of ground state properties of exotic nuclei.

Focus of this talk will be on

- Fermi decays and Standard Model
- structure studies of medium-mass neutron-rich nuclei by mass measurements

Nuclear structure (10-100 keV)

Global correlations (100 keV) Local correlations (10 keV)

 shell structure, spin-orbit interaction, pairing, collectivity Drip-line phenomena, halos, isomers (1 keV)
Isotope & isomer decay spectroscopy (< 0.5 MeV)

- Nuclear astrophysics (≥ 1 keV)
- Isospin symmetry in nuclei (≤ 1 keV)
 - Isospin multiplets Coulomb energy differences

• Tests of Standard Model ($\leq 100 \text{ eV}$) $\delta m/m < 1 \cdot 10^{-9}$

Nuclear β decay. Electroweak interaction

- CVC theory and unitarity of the CKM matrix
- Double β decay
- Neutrino mass from beta decay(< 0.1 eV)

Penning trap - single ion device

JYFLTRAP mass measurements

Figure 1: Nuclear chart showing the superallowed β emitters of interest. The 13 emitters that currently contribute to the world average $\mathcal{F}t$ value are circled. Emitters whose Q_{EC} values have been determined with a Penning trap are indicated.

Hardy and Towner, Phys. Rev. C 91, 025501 (2015)

Hardy-Towner review for V_{ud} coupled with PDG 2014 for V_{us} and V_{ub}

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.99978 \pm 0.00055$$

Unitarity is fully confirmed by this data !

Mass measurements of neutron-rich isotopes of medium mass. Major revision of binding energies of fission products.

A. Kankainen, J. Äystö, A. Jokinen, J.Phys. G. Nucl. Part. Phys. 39 (2012) 093101

2003 mass evaluation and the PT data

J. Phys. G: Nucl. Part. Phys. 39 (2012) 093101

11

Mass models vs. improved data

Mean-field models vs improved data

P. G. Reinhard, D. J. Dean, W. Nazarewicz, J. Dobaczewski, J. A. Maruhn, and M. R. Strayer, Phys. Rev. C 60, 014316 (1999).

From: J. A. WINGER et al. PHYSICAL REVIEW C 81, 044303 (2010)

Nucleon separation energies: reflection of s.p. energies

14

Evolution of N=50 shell gap

COLLINEAR LASER SPECTROSCOPY WITH BUNCHING

been demonstrated in an on-line isotope shift and hyperfine structure measurement on radioactive ¹⁷⁵Hf.

16

Charge radii and two-neutron binding energies

Neutron-rich masses close to ¹³²Sn

Odd-even staggering (OES) in nuclear masses

a measure of empirical pairing gap

3-point formula

 $\Delta_N^{(3)} = (-1)^N \left[ME(Z, N+1) - 2ME(Z, N) + ME(Z, N-1) \right] / 2$

OES mostly depends on the intensity of nucleonic pairing correlations in nuclei but is also affected by the polarisation effects!

 $\text{OES}(N_{\text{odd}}) \sim \text{measure of pairing effects}$

 $OES(N_{even}) \sim impacted by single particle states around Fermi level$

VOLUME 81, NUMBER 17 PHYSICAL REVIEW LETTERS 26 OCTOBER 1998

Odd-Even Staggering of Nuclear Masses: Pairing or Shape Effect?

W. Satuła,^{1,2,3} J. Dobaczewski,^{1,2,3} and W. Nazarewicz^{2,3,4}

Odd-even staggering across the N=82 shell closure

Spherical self-consistent calculation using Sly4 energy density functional plus contact pairing

Dobaczewski, Flocard, Treiner, Nucl. Phys. A 422(1984)103

Mean field calculation with SLy4 functional in spherical and deformed basis. \rightarrow No success!

L. Coraggio et al, PRC 88(2013)041304(R)

Spherical Shell Model calculation with proton-neutron effective interaction included.

Summary

- Our knowledge of binding energies of neutron and proton -rich nuclei has experienced a major revision during the last 15 years due to Penning-trap technique applied at different accelerators.
- More than 1000 new masses have been measured with uncertainties of a few keV or less addressing a number of important (fundamental) issues for nuclear structure physics.
- The present data set provides a true challenge for future developments of mass models and nuclear structure theories when approaching the limits of nuclear stability and using nuclei as laboratories for fundamental physics.
- Future of the field will strongly be impacted by the in-flight facilities such as RIBF at RIKEN, FRIB at NSCL and FAIR.