Producing Radioactive Ion Beams through the Isotope Separation On Line Method: Advances, challenges and opportunities. Mark Huyse KU Leuven, Instituut voor Kern- en Stralingsfysica, Belgium

ISOL: The Oxford Dictionary of Abbreviations | 1998 | isol. isolate(d) • isolation

> My definition of the ISOL method: the production of a (pencil-like) beam of (short-living) nuclei, stopped after the nuclear reaction (or decay), (re-)ionized, mass separated, all in a efficient, fast flow.

Production of intense and pure radioactive ion beams

Challenge: the release problem

Production of intense and pure radioactive ion beams

Production: Target Ion Source Developments

Primary beam intensity Higher in primary beam intensity (now 100 μ A at ISAC) From kW towards MW on target

Recent developments of target and ion sources to produce ISOL beams T. Stora Nuclear Instruments and Methods in Physics Research B 317 (2013) 402–410 CERN, CH-1211 Geneva 23, Switzerland

Release

=> molecular sidebands

HELICON-type ion source for molecular sidebands

M. Kronberger et al./Nuclear Instruments and Methods in Physics Research B 317 (2013) 438-441

50-fold enhancement of ¹⁰⁻¹¹CO⁺with nanostructured CaO target

Fast release =>T_{1/2}

=> nanostructured materials

J.P. Ramos et al./Nuclear Instruments and Methods in Physics Research B 320 (2014) 83-88

fast diffusing=> shorter $T_{1/2}$ lower temperatures=> higher reliability

Selectivity

=> lasers and physico-chemical properties

Mark Huyse

Reflections on the atomic nucleus conference, Liverpool 28-30 July 2015

Production: Gas stoppers for high-energy recoils

Challenge: large stopping volume is needed => minimize neutralization, diffusion losses and delay times using electric fields

- Linear gas stoppers

M. Wada, NIM B317 (2013) 450-456

- Circular gas stoppers
 - S. Schwarz et al., NIM B317 (2013) 463-467

Challenges: beam purity and high intensity => cryogenic cell

W. R. $Pla\beta$ et al., NIM B317 (2013) 457-4612

Mark Huyse

Reflections on the atomic nucleus conference, Liverpool 28-30 July 2015

Production: Resonant Ionization Laser Ion Source (RILIS)

Manipulation of ISOL beams

cooling

=> improving the ion optical properties

- bunching
- mass separation => optimal mass-resolving power while keeping the efficiency (dipoles M/\Delta M ~20.000; cyclotrons and MR-TOF's higher)
- neutralisation => for laser applications
- polarisation => solid-state physics, fundamental physics
- deceleration => injection in traps
- post acceleration => reactions, implantation, ...

Manipulation: Post acceleration

Challenge: higher charge state is needed for efficient post acceleration

P. Delahaye/Nuclear Instruments and Methods in Physics Research B 317 (2013) 389-394

=> stripper foils TRIUMF / ISAC

=> Electron Cyclotron Resonance Ion Source (ECRIS) LLN TRIUMF / ISAC GANIL / SPIRAL

=> Electron Beam Ion Source or Trap (EBIS/T) ISOLDE => HIE-ISOLDE NSCL + more to come

Mark Huyse

Integration with experimental set-ups

- decay setups
 - different implantation conditions (temperature, material, e.m. fields, ...)
 - different detectors
- Iaser setups
- ion traps
- atom traps
- reaction chambers
- spectrometers
- storage rings

Strong coupling between the production, the manipulation and the experiments

Mark Huyse

Integration: In-Source Laser Production and Spectroscopy

Integration: In-Source Laser Spectroscopy

Hot Cavity @ IRIS, ISOLDE, TRIUMF, ...

In-Gas Cell @ LISOL

Hot Cavity

- (Almost) no refractory elements
- T_{1/2} element dependent
- Sensitivity 1 ion/s (¹⁸²Pb)
- Resol~ 4 GHz (⁵⁹Cu) (Doppler)
- Produced Ion beams ~30 elements

Gas Cell

- All elements available
- T_{1/2} cell evacuation time
- Sensitivity < 1 ion/s (97 Ag)
- Resol. ~ 4 GHz (⁵⁹Cu) (Pressure)
- Produced Ion beams ~15 elements

Mark Huyse

Reflections on the atomic nucleus conference, Liverpool 28-30 July 2015

Integration: In-Gas-Cell Laser Spectrocopy

After forty years of faithful service LISOL's last experiments

in a new region ¹⁹⁷Au(²⁰Ne-145 MeV,4-5n)^{212,213}Ac ¹⁹⁷Au(²²Ne-143 MeV,4-5n)^{214,215}Ac

and with a large collaboration

LISOL: P. Creemers, L.P. Gaffney, L. Ghys, C. Granados, M. Huyse, Yu. Kudryavtsev, Y. Martínez, E. Mogilevskiy, S. Raeder, S. Sels, P. Van den Bergh, P. Van Duppen, A. Zadvornaya

GANIL- IPN Orsay – LPC Caen: B. Bastin, D. Boilley, Ph. Dambre, P. Delahaye, P. Duchesne, X. Fléchard, S. Franchoo, N. Lecesne, H. Lu, F. Lutton, Y. Merrer, B. Osmond, J. Piot, O. Pochon, H. Savajols, J. C. Thomas, E. Traykov

University of Mainz: R. Heinke, T. Kron, P. Nauberreit, P. Schoenberg, K. Wendt

University of Jyväskylä: I. Moore, V. Sonnenschein

ISOLDE: S. Rothe

GSI: M. Block, M. Laatiaoui

TRIUMF: P. Kunz, J. Lassen, A. Teigelhoefer

Mark Huyse

Reflections on the atomic nucleus conference, Liverpool 28-30 July 2015

Integration: In-Gas-Cell Laser Spectrocopy

Integration: In-Gas-JET Laser Spectrocopy

REGLIS³ @ SPIRAL2

REGLIS³ @ SPIRAL2

MAJOR ASSETS OF THE DEVICE	Expected performances		
<pre>✓ efficient : produced in very small quantities (-> ~ 1 pps*) ✓ selective : suppression of unwanted isotopes (1/10 000 lower limit demonstrated) ✓ fast : short life time (up to ~ 40 ms) ✓ sufficient spectral resolution (-> few hundred MHz): determine the isotope/isomer shift and hyperfine structure, spin, moments => 2 in 1 : Laser spectroscopy + Laser lon Source (pure (isomeric) beams)</pre>	Transmission through S3Thermalization, diffusion and transport through the exit holeNeutralizationLaser ionizationTransport efficiencyTotal efficiency	40-50 % 50-90 % 50-100 % 50-60 % 80-90 % 4-24 %	

* Rate of ions reaching the detection system

580

R. Ferrer et al./Nuclear Instruments and Methods in Physics Research B 317 (2013) 570-581

Table 2

Summary of the main results obtained for the three reaction products (first column) taken as a model to study the performance of the IGLIS@S³ setup. In the second and third columns the rate at the Focal Plane (FP) for the species of interest and the total current, including contaminants, are respectively given. The range in the argon buffer gas of the reaction products, the steady-state plasma density, and the time needed for neutralization are listed in the forth, fifth and sixth columns, respectively. In the last column the expected rate for the species of interest is given taking into account a current of the primary beam of 1 puA and a lower limit overall efficiency of the system (see Table 1).

Reaction	Rate@FP (pps)	I _{tot.} @FP (pps)	Range (mm)	$ ho_{plasma}{}^{\mathrm{a}}(\mathrm{cm}^{-3})$	$\tau_{rec.}$ (ms)	Rate@Detec. (pps)
⁵⁸ Ni (⁴⁰ Ca, p3n) ⁹⁴ Ag	45	$2 \cdot 10^6$	14	2.10^8	5	1.5
¹⁹⁷ Au (²² Ne, 4n) ²¹⁵ Ac	7·10 ³	$1 \cdot 10^4$	9	$1.3.10^7$	70	220
²⁰⁸ Pb (⁴⁸ Ca, 2n) ²⁵⁴ No	11	50	16	$1.2.10^6$	700	0.3

^a Assuming a recombination coefficient in argon of 10^{-6} cm³ s⁻¹.

HELIOS @ KU Leuven

Integration: Coupling to storage rings

ERIS for SCRIT at RIKEN

M. Grieser et al. Eur. Phys. J. Special Topics 207 (2012) 1–117

M. Wakasugi et al., NIMB 317 (2013) 668-673

Mark Huyse

Reflections on the atomic nucleus conference, Liverpool 28-30 July 2015

