TSR: 460192 To be, or not to be?

Reflections on the atomic nucleus Liverpool 2015

Advantages

Compared to in-flight storage rings

- Higher intensity
- Cooler beams / Shorter cooling time

Compared to direct^{*} beams

- Less background (clean target, target container, beam dump)
- Improved resolution (smaller beam size, reduced energy straggling in target)
- CW beam
- Luminosity increase for (light) beams

* reaction experiments with non-circulating,'thick' target after linac

Why ISOL + ring?

World-wide storage rings

Storage Rings for Physics with Exotic Nuclei

Courtesy Y. Litvinov

ISOLDE - a suitable custodian?

ISOLDE beams

REX-ISOLDE post-accelerator becomes HIE-ISOLDE

HIE-ISOLDE installation schedule 3 MeV/u until 2012

2015: ~4.2 MeV/u (physics in October)

2016: ~5 MeV/u 2017: 10 MeV/u

Energies at post-accelerator

gold-coated cavity

REX-ISOLDE post-accelerator becomes HIE-ISOLDE

HIE-ISOLDE installation schedule 3 MeV/u until 2012

2015: ~4.2 MeV/u (physics in October)

2016: ~5 MeV/u 2017: 10 MeV/u

cryo module inside linac tunnel

The ring and its beam characteristics

The following two sections are based on presentations given by Manfred Grieser, MPI-K Heidelberg at TSR workshop

Courtesy of M. Grieser

Test Storage Ring at Heidelberg

* In operation since 1988

* Mainly for atomic physics studies and accelerator development

* One nuclear physics experiment – FILTEX (internal polarized H₂ gas target)

Courtesy MPI-K

Circumference: 55.42 m Vacuum: **~few 10**⁻¹¹ **mbar** Acceptance: 120 mm mrad Multiturn injection: mA current Electron cooler: transverse T_{cool} in order of 1 s RF acceleration and deceleration possible Typical energy ¹²C⁶⁺: 6 MeV/u

www.mpi-hd.mpg.de/blaum/storage-rings/tsr/index.en.html

Beam energy ring

TSR magnetic rigidity range: 0.25-1.57 Tm

REX linac 2<A/q<4.5

Beam can be accelerated (and decelerated) inside the ring

Upgrade at CERN will allow ramping time < 1 s

Pending achievable A/Q inside charge breeder

5 MeV/u sufficient for lifetime and nuclear structure studies

e-cooler – energy spread

e-cooler – energy spread

e-cooling needed for:

1. Reducing momentum spread

∆p/p ~ 5·10⁻⁵ (rms)

HIE-ISOLDE $\Delta p/p \approx 1.10^{-3}$ (rms)

e-cooler – transverse ϵ

e-cooling needed for:

1. Reducing momentum spread

e-cooler – transverse ε

e-cooling needed for:

- 1. Reducing momentum spread
- 2. Reducing beam size / transverse emittance

e-cooler properties

e-cooling needed for:

- 1. Reducing momentum spread
- 2. Reducing beam size / transverse emittance
- 3. Stacking of multi-turn injection
- 4. Compensate for energy loss in in-ring target

in the velocity range 0.03<ß<0.16

 $\rm T_{\rm cool}$ – horizontal cooling time for beam with large diameter

Maximum ring intensities

Space charge limit in TSR

- Incoherent space-charge tune shift
- Transverse instabilities

$$I_{\text{limit}} = \text{const} \frac{(A^{19} \cdot E^9)^{1/28}}{Q}$$

$$I_{\text{TSR}} \approx T_{\text{lifetime}} \frac{\varepsilon_{\text{m}}}{d_{\text{dilution}}} \frac{V_{\text{projectile}}}{C_0} < I_{\text{REX}} >$$

 $C_0 = ring circumference$ ε_m =0.8, d_{dilution}=2 T_{lifetime} = storage life time $<I_{REX}>$ = ISOLDE ion current * REX efficiency

Information from M. Grieser, TSR workshop 2014

Scattering and e-cooler lifetimes

* residual gas ms and ss lifetime are longer

* di-electronic recombination generally a factor 1.5-5 higher than RR for electronion energies <10 meV

A. Wolf et al, Nucl Instr Meth A441 (2000) 183-190

Total storage lifetimes

Storage time for REXEBIS charge states

10 MeV/u H₂ target, $5 \cdot 10^{-13}$ atoms/cm² e-cooler $1.5 \cdot 10^7$ cm⁻³ 4.4 meV,

Schlachter formula for σ_{capture} Franzke extrapolation for $\sigma_{\text{stripping}}$

NB! Calculation excludes contribution from residual gas as the integrated thickness is much smaller (55.42 m, $5 \cdot 10^{-11}$ mbar) => $6.7 \cdot 10^9$ atoms/cm²

Integrated target thickness

Effective target thickness:

(gas target thickness) x (revolution frequency) x (lifetime)

M. Grieser, TSR workshop 2014

Schottky pickup sensitivity

Q - ion charge Q_w - Q value of LC circuit Q_w = 263, $\alpha(Q_w$ =263) = 65 N - number of ions n - harmonic number of revolution frequency $U_{r,Qw=1} = 0.5 \text{ nV} / \sqrt{\text{Hz}}$ amplifier noise L = 0.35 m pick-up length C=300 pF total capacity C_0 =55.42 ring circumference

$$\begin{split} \eta &= 0.9 \text{ (standard mode)} \\ f_0 &= 0.7 \ 10^6 \text{ Hz revolution frequency} \\ \Delta p/p &= 2 \cdot \ 10^{-5} \text{ full momentum spread width} \end{split}$$

Schottky pickup sensitivity

$$\Delta f = \begin{cases} \Delta f_{schottky} = \eta \, \Delta p \, / \, p \, nf_0 \\ \text{for multiple particle detection} \\ \Delta f_{bandwidth} \\ \text{for single particle detection} \end{cases}$$

Based on information from M. Grieser, TSR workshop 2014

Experimental matters to keep-in-mind

M. Grieser, TSR workshop 2014

⁷Be³⁺ decay measurement

 $^{7}\text{Be}^{3+}+e^{-}\rightarrow^{7}\text{Li}^{3+}+\nu$

Example: N₀=10⁷ ⁷Be³⁺ injected At 8 MeV/u $\Rightarrow \tau_{Be}$ = 240 s , τ_{Li} = 8400 s storage life-times

M. Grieser, TSR workshop 2014

⁷Be³⁺ decay measurement

Proton pick-up reactions

Issue rigidities of ^AX^{(q+1)+} and ^{A+1}Y^{(q+1)+} are equal

Energy deviation of $^{A+1}Y^{(q+1)+}$ and $^{A}X^{(q+1)+}$

$$\frac{\delta \mathsf{E}}{\mathsf{E}} = -\frac{1}{(1+\mathsf{A})}$$

Reactions

nuclear: ${}^{A}X^{q+}+p \rightarrow {}^{A+1}Y^{(q+1)+}+\gamma$ ionization: ${}^{A}X^{q+} \rightarrow {}^{A}X^{(q+1)+}+e$ recombination: ${}^{A}X^{q+}+e \rightarrow {}^{A}X^{(q-1)+}$

 \Rightarrow experiment has to be carried out with bare ${}^{A}X^{q+}$ ions

M. Grieser, TSR workshop 2014

Proton pick-up reactions

 86 Kr ${}^{36+}$ + p \rightarrow 87 Rb ${}^{37+}$ + γ

Particle trajectories in separator magnet

$$x = D_x \cdot \left(\frac{\Delta m}{m} + \frac{\Delta v}{v} - \frac{\Delta Q}{Q}\right)$$

dispersion function

In-flight decay of light ions

M. Grieser, TSR workshop 2014

beam size after multi-turn injection

detector position should be outside the ring acceptance

Courtesy of M. Grieser

In-flight decay of light ions

development of a multi-turn injected ¹²C⁶⁺ beam

Externally extracted beam

M. Grieser, TSR workshop 2015

Beam extraction

Beam extraction to external experiment using either:

* Fast extraction –
≈ revolution time ≈ us bunches

 * Slow extraction – bunch lengths up to seconds using horizontal RF noise excitation close to a 3rd order resonance
+ dispersive electron cooling

M. Grieser

Extraction types – pros and cons

Slow extraction

- + TSR has a slow extraction system
- + The extraction rate can be controlled by the noise level
- + In combination with dispersive electron cooling the extracted ion beam quality comparable to an electron-cooled in-ring beam
- Dispersive electron cooling not tested in this context

Controlling the extraction rate

Fast extraction

- + ϵ and $\Delta p/p$ of extracted beam similar to cooled in-ring ion beam (but need to bunch the beam during e-cooling \Rightarrow some increase of momentum spread and emittance)
- TSR is not equipped with a fast extraction system \Rightarrow extraction system has to be built (estimated cost > 1 Million CHF + 4.4 man year)
- Modification of TSR is required (removing of quadrupole family 3)

Internal gas target

ESR target layout

Courtesy of N. Petridis

- The cryostat allows the nozzle operation at temperatures down to $T_0 = 4 K$
- The target density can be derived from the pressure increase in the dump pressure chambers $S_1 - S_4$

Courtesy of N. Petridis

phase, yielding a supersonic jet,

multiphase target.

cluster or microdroplet beam -

Gas target performance

Target gas	Area density $[cm^{-2}]$	T_0 [K]
Helium	$1 imes 10^{13}$	20
Hydrogen	$3 imes 10^{13}$	40
Nitrogen	$8 imes 10^{12}$	130

Currently achievable cluster target densities

Expected n for multiphase target: 10¹⁰ cm⁻³ – 10¹⁵ cm⁻³

Variable target widths down to **1 mm**: $n\Delta x = 10^{14} \text{ cm}^{-2} \text{ at } \Delta x = 0.1 \text{ cm}$

Droplet target (limited distance)

In-ring experimental station

* Experimental setups installed on precision rails, moveable in and out from ring.

M. Grieser

Project progress

Building layout

Beam-line layout

Standard HIE-ISOLDE beam line elements for injection line

Exact position of ring to be defined

Thanks for your attention

...and to Peter for the encouraging support!

Credits to

M. Grieser MPI-K

Experimentalists K. Blaum, P. Butler, R. Raabe, Y. Litvinov, P. Woods...

TSR@ISOLDE collaboration

