

Leda and the Swan, copy by Cesare da Sesto after a lost original by Leonardo, 1515–1520,

1

Impact of superheavy element research on theory

Teng Lek Khoo Argonne National Laboratory

- Nuclei at three simultaneous limits: *Z*, *I*, *E**
- Models anchored on nuclei where data available for parameter fits.
- Calculations of superheavy elements (SHE) --& superdeformed nuclei -- represent true predictions, rather than descriptions.

SHN exist only because $\mathbf{E}_{\mathbf{shell}}$ provides extra binding, creating a

fission barrier, $\mathbf{B}_{\mathbf{f}} = \mathbf{E}_{\text{saddle}} - \mathbf{E}_{\text{gs}}$.

E_{shell} arises from gaps in the **single-particle spectrum**. All properties can, in principle, be calculated once the spectrum is established.

 E_{shell} , B_{f} , single-particle spectrum: each & every one necessary for existence of SHN, essential aspects of the field.

Shell energy E_{shell} at high spin I

- Search for ever heavier superheavy elements: an exciting (& glamorous) frontier in nuclear physics.
- The underlying physics: how E_{shell} persists at large Z, i.e. E_{shell}(Z). Magic numbers of SHN?
- $E_{shell}(I,Z,N) \rightarrow more insight.$

Effect of **deformation** & **rotation** on orbital energy

- Deformation & rotation lower sub-states of high-lying j shells towards Fermi level.
- Shells become accessible which otherwise would not be (if nucleus were spherical).

Proton and neutron single-particle energies (Woods-Saxon potential)

Spectroscopy, mass and reaction data

- Combine spectroscopic, mass and reaction data to develop a more complete, consistent description.
- Especially when data is sparse, as for SHN.
- SPE from spectroscopy, mass.
- Entry distribution \leftrightarrow Fission barrier B_f , formation mechanism.
- E_{shell}(I) from mass & yrast line.

1. Single-particle energies (SPE) of SHE:

- Shell energy originates from single-particle spectra, particularly from gaps.
- SPE represent the core from which all follows: existence, mass, shell energy, fission barrier.
- Accurate predictions require accurate SPE.
- Different models have discrepant SPE.
- Can predictions be accurate without accurate SPE?

Where are the magic gaps for superheavy nuclei?

8/18/2015

T. L. Khoo, Reflections 2015

SPE must be different; therefore testable.

Single-particle energies (SPE) of SHN:

decisive test of theory

- Extract a set of SPE, which give E(1qp) equal to measured energies in ^{247,249}Bk, ²⁵¹Es & ²⁴⁷Cm, ²⁵¹Cf.
- Trial set of SPE.
- Calculate E(1qp), using LN procedure for pairing.
- Iterate until E(1qp) reproduce experiment.

E(2qp) provide complementary tests.

"SPE" (deduced from E_{1qp}) Expt. vs. theory

Spectrum directly reflected in E_{1qp} , E_{2qp} & masses.

Degeneracies in SPE \rightarrow $\Delta E_{1qp} < 9, 55 \text{ keV}.$ Gaps at Z=100, N=152 \rightarrow largest E_{shell} at ²⁵²Fm; also reflected in δS_{2n} , δS_{2p} . Errors in E_{1qp,2qp}(DFT) traced to too high E(high-j); Δ E up to 1.4 MeV!

Spectroscopy, mass

Single-particle spectra directly manifest in binding energy, hence mass & δS_{2n} , δS_{2p} . Also governs B_f .

Afanasvej et al, PR C67, 024309 (2003)

Comments on theory

- DFT^{a)} require improved effective interactions.
- Predict gaps at Z = 120,126, but give wrong deformed gaps.
- Woods-Saxon (WS) potential gives reasonable (best) spe. Gap at Z=114.
- High-K 2-qp isomers establish configurations & support above conclusions.

B_f in ²⁵⁴No. How does it test theories that predict properties of SHE?

- ²⁵⁴No shell-stabilized, like SHE.
- Dominant contribution to B_f from shell energy, which depends on single-particle spectrum (spe).
- Theoretical approaches have different spe, hence, different B_f. (Mic-mac: 6.76 MeV; DFT: 6 – 12.5 MeV.)

- Classical & most direct method: **fission threshold** after transfer reactions.
- Up to Cf (Z=98). No results for heavier Z for >40 y due to lack of stable target, so we need a new method.
- $\Gamma_{\gamma}/(\Gamma_{\gamma} + \Gamma_{f}) \rightarrow 0$ at fission threshold, below S_{n} , (where only γ & fission channels open).
- γ calorimetry with Gammasphere → entry distribution (starting points for γ decay to ground state)
- $\mathbf{E}^*_{\text{cutoff}}$ of entry distribution $\rightarrow E_{\text{saddle}}(\mathbf{I}), B_f(\mathbf{I}).$
- $B_f(I\sim15) \sim 6.6$ (5) MeV; $B_f(I=0) \sim 6.0$ (9) MeV.

G. Henning et al., PRL 113, 262505 (2014)

Figure 6.4: Spin distribution profile for $E_{\text{Beam}} = 219$ MeV recoil gated (blue) and $E_{\text{Beam}} = 223$ MeV recoil gated (red).

structure/reaction $B_f, \sigma(I) \leftrightarrow$ formation mechanism.

G. Henning et al., Ph. D. thesis, U. Paris Sud

High spin states (I≤32) in ^{248,250}Cf from transfer reactions in ²⁰⁸Pb + ²⁴⁹Cf

E_{mic} vs. I(I+1)

N =150, 152; Z = 94-104

- E_{mic} decreases with I.
- Rate of decrease depends on moment of inertia, backbend.
- For $I \ge 24$, E_{shell} in ²⁴⁸Cf is more negative than in ²⁵⁴No.

• No calculation yet which simultaneously describes g.s. and yrast mass at high spin.

Summary

Theoretical description of SHN

A good model should describe **all** properties:

- single-particle spectra (proton and neutron gaps),
- E_{shell}(I),
- masses of ground &saddle states,
- fission barriers.

Microscopic-macroscopic models (with WS or folded Yukawa potentials) almost satisfy this criterion.

DFT is limited by the hunt for a good effective interaction.

SHN robust & populated predominantly at high spin.

collaborators

G. Henning^{1,6}, S. Hota³, A. Lopez-Martens⁶, I. Ahmad¹,
P. Chowdhury³, T.L. Khoo¹, F.G. Kondev¹, D. Seweryniak¹,
M. Asai⁴, B.B. Back¹, P. A. Butler⁸, M.P. Carpenter¹, C.N. Davids¹,
J. P. Greene¹, P. T. Greenlees⁵, K. Hauschild⁶, A. Heinz⁷, R.-D. Herzberg⁸,
R.V.F. Janssens¹, D.G. Jenkins², G.D. Jones⁸, S. Ketelhut⁵,
T. Lauritsen¹, C.J. Lister¹, E. McCutchan¹, T. Nakatsukasa⁹,
P. Papadakis⁸, D. Peterson¹, J. Qian⁷, P. Reiter, A. Robinson²,
S.K. Tandel³, U.S. Tandel³, X.F. Wang^{1,11}, S.F. Zhu¹

¹Argonne National Laboratory, Argonne, IL, USA, ²University of York, Heslington, York, UK, ³University of Massachusetts Lowell, Lowell, MA, USA, ⁴Japan Atomic Energy Agency (JAEA), Japan, ⁵ University of Jyväskylä, Finland, ⁶CSNSM, IN2P3-CNRS, Orsay, France, ⁷WNSL, Yale University, New Haven, CT, USA, ⁸University of Liverpool, Liverpool, U.K., ⁹RIKEN Nishina Center, Japan, ¹⁰University of Maryland, College Park, MD, USA, ¹¹University of Notre Dame, Notre Dame, IN, USA

The end!

- Thank you for your attention.
- Thank ye.
- Diolch i chi.
- Go raibh maith agaibh.

Supported by U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.