Reflections on the atomic nucleus

In-beam studies of the structure of exotic nuclei

Rauno Julin Department of Physics University of Jyväskylä Finland JYFL

our team in 1994

Reflections: E0 transitions and shape coexistence

Late 70's: Still relevant for studies of exotic nuclei : E0- transitions in Z ≈ 50 nuclei

Probing exotic states and shape coexistence in ²⁰⁸Pb, ¹⁸⁶Pb and ¹⁹⁴Po

Hunting of EO's at JYFL: electron spectrometers, fast timing, coulex

We saw strong and weak EO($0^+ \rightarrow 0^+$)'s B(E0) = R⁴ ρ^2

Hunting of EO's at JYFL: electron spectrometers, fast timing, coulex

We saw strong and weak $EO(0^+ \rightarrow 0^+)$'s B(E0) = R⁴p²

R. Julin thesis 1979, ZP A296, 315 (1980)

How to explain $\rho^2 = 100 \times 10^{-3}$ in ¹¹⁶Sn ?

How to explain $\rho^2 = 100 \times 10^{-3}$ in ¹¹⁶Sn ?

R. Julin thesis 1979, Kantele et al. ZP289, 157(1979) Introduction of the simple shape-mixing model (Jan Blomqvist's idea) $O_{1}^{*} = +a|sph\rangle + b|de|\rangle \rightarrow g^{2} \ll a^{2}b^{2}\beta^{4}$ $O_{2}^{*} = -b|sph\rangle + a|de|\rangle \rightarrow g^{2} \ll a^{2}b^{2}\beta^{4}$

¹¹⁶Sn : take 50/50 mixing and ß = 0.22 $\rightarrow \rho^2 = 100 \times 10^{-3}$

shape coexistence !

Sn

E0 transitions are fast in heavy nuclei

Figure 6-8 Speeds of E0 transitions with
$$\rho^2 = 0.010$$
. For comparison, the Weisskopf estimate half-life for E2 ($A = 100$) is also shown.

$$\lambda_{E0} = \Omega \times \rho^2$$

Ω increases with Z

Pb isotopes: ²⁰⁸Pb

Julin et al. PR C36 (1987) 1129

11

Combination of in-beam and delayed events Recoil-Decay-Tagging

Very neutron deficient heavy nuclei

- + can be produced via fusion evaporation reactions
- only levels close to the yrast line populated
- cross-sections down to 1 nb
- + short-living alpha or proton emitters \rightarrow Recoil Decay Tagging

Three low-lying 0⁺ states in ¹⁸⁶Pb observed in the α - decay of ¹⁹⁰Po

86Pb

... but can we identify band structures on top of those ?

... can we see any E0's ?

 $^{186}\text{Pb}_{104}$

A. Anreyev et al. Nature 405, 430

RDT y rays from ¹⁸⁶Pb

¹⁰⁶Pd(⁸³Kr,3n) ¹⁸⁶Pb

PROLATE

Above 1MeV ¹⁸⁶Pb looks like any deformed nucleus except

J. Pakarinen et al. PR C75, 014302, 2009

186Pb

RDT singles conversion-electron spectrum (SAGE)

Triple - shape coexistence in Po isotopes (Z = 84)

¹⁹⁴Po alpha-tagged singles

conversion-electron spectrum (SAGE)

Future challenges:

Analysis of the existing SAGE γ -ray and electron data + new SAGE measurements \rightarrow E0's

Recoil-shadow electron measurements with RDT \rightarrow lifetimes $\rightarrow \rho^2$, B(E2)

```
Coulex with heavy RIB's \rightarrow B(E2), \rho^2
```

Electron spectroscopy with RIB's (SPEDE) \rightarrow E0's, ρ^2

Transfer reactions with heavy RIB's → configurations of intruder states

Peter and me since 1994

