Developments in in-beam conversion electron spectroscopy

Janne Pakarinen University of Jyväskylä Reflections on the atomic nucleus conference 28-30 July 2015 Liverpool, UK

OUTLINE

- Front matter motivation
- ✓ SACRED innovative apparatus
- ✓ SAGE simultaneous e⁻ γ spectroscopy
- ✓ SPEDE $e^-\gamma$ spectroscopy with radioactive beams
- ✓ Backmatter

D. M. Cox el al., Eur. Phys. J. A (2015) 51: 64

Internal conversion coefficients for ²⁵⁴No

The E0 transitions – solely via internal conversion (MeV) 16^{+} 4 14^{+} 652 551 14^{+} 3.5 12^{+} 606 3 508 12^{+} 10^{+} 2.5 550 Energy (MeV) 463 10^{+} 8+ 2 424 486 6^{+} 8+ 401 415 4 6^{+} 392 337 4+ 2^{+} 0.5 261 2+ -20 0^{+} 0^{+} $\beta_2 sin(\gamma+30)$ 945 25 30 662 650 20 15 20 10 532 0 U) $\beta_2 \cos(\gamma + 30)$ 0^{+} 0

A. N. Andreyev *et al.*, Nature 405, 430 (2000) J. Pakarinen *et al.*, Phys. Rev. C 72 011304(R) (2005)

Electron spectroscopy challenge

- Electron detection within the same chamber as the target
- δ -electrons production cross section of the order of megabarns
- Intensity distributed to electrons originating from different atomic shells

δ-electron suppression

High resolution and efficiency Channel selection

Further motivation and key players

Jyväskylä monopole group* that has, since 1975, concentrated its efforts to reach the following goals:

- (i) To develop new methods necessary for systematic studies of 0⁺ states via their electromagnetic decay (or population), with special reference to E0 transitions.
- (ii) To carry out systematic measurements in certain regions of interest; as the first step, near closed proton cores.
- (iii) To obtain nuclear-structure information on features especially probed by electric monopole transitions. For example, E0 matrix elements may imply the presence of proton particle-hole excitations or pairing vibrations, deformation, neutron excitations, state dependence of effective monopole charges, etc.
- (iv) To stimulate theoretical work by providing reliable systematic data.

J. Kantele, XIV Masurian summer school on nuclear physics, 1981

R. Julin

Juhani Kantele Fysiikan professori 1966-1992

Further motivation and key players

OUTLINE

- ✓ Front matter motivation
- ✓ SACRED innovative apparatus
- ✓ SAGE simultaneous e⁻ γ spectroscopy
- ✓ SPEDE $e^-\gamma$ spectroscopy with radioactive beams

✓ Backmatter

SACRED – first incarnation

 208 Pb(18 O,4n) 222 Th – 1% channel E_{beam} = 95 MeV

254No - Rast Stagnengygspepetetnum (16^{+}) 29(10) 414.0 $4 \rightarrow 2$ (14^{+}) No $K_{\alpha 1}$ 30 53(11) 366.5 (12^{+}) No $K_{\alpha 2}$ 0 38(9) 318.2 (10^{+}) 72(13) 267.2 (8+ 84(16) ,214.1, (6+ 100(32)158.9 1500020040250 5800 600 $1\hat{5}\hat{0}$ 12000 700 00(4+ $(1\overline{0}2)$ (2^{-1}) electron emergy(keV) (44) 25^{2} M. Leino et al., Eur. Phys. J. A 6, 63–69 (1999) 102 P.A. Butler et al., Phys. Rev. Lett. 89, 202501 (2002)

OUTLINE

- ✓ Front matter motivation
- ✓ SACRED innovative apparatus
- ✓ SAGE simultaneous e⁻ γ spectroscopy
- ✓ SPEDE electron spectroscopy with RIBs
- ✓ Backmatter

SAGE

J. Pakarinen, P. Papadakis, J. Sorri, R.-D. Herzberg el al., EPJ A 50, 53 (2014)

SAGE entrance as seen by a beam particle

SAGE detector

Bias contact

Guard rings `

Si detector segment

PCB

Signal tracks

Bonding pads

Transition energy	$lpha_{K340}$	$lpha_{{\sf L}340}$	$lpha_{K370}$	$lpha_{{\sf L370}}$
M1 (Brlcc)	0.248(4)	0.0422(6)	0.198(3)	0.0336(5)
E2 (Brlcc)	0.0486(7)	0.0238(4)	0.0401(6)	0.0176(3)
SAGE	0.044(4)	0.026(4)	0.042(5)	0.021(4)

Recoil gated electron singles in the ¹⁸⁸Pb experiment Transitions in: Other TI or Pb Counts / keV 00000 00000 K229 al ats II as a sec Energy [keV]

SAGE experiments	135 total Days	Notes
Simultaneous conversion-electron and gamma-ray spectroscopy using SAGE; An in-beam study of ²⁵³ No	10	Paper in preparation Thesis
Exploring shape co-existence in ^{202,204} Rn	7	Analysis on-going
Shape co-existence in ¹⁸²⁻¹⁸⁸ Hg	7	PRC 83, 037303 (2011)
Exploring nuclear shapes in the transitional region of N \sim 90: Coulomb excitation of ^{152,154} Sm to study E0 transitions with SAGE	4	PLB 732, 161 (2014) Thesis
Probing E0 transitions in ¹⁸⁸ Pb using the SAGE spectrometer	9	Analysis on-going
Complete Spectroscopy of the Transfermium Nucleus ²⁵⁵ Lr	30	Paper in preparation Thesis
Spectroscopy of the odd-proton ^{249,251} Md	12	Analysis on-going
Probing E0 transitions in ¹⁸⁶ Pb using the SAGE spectrometer	10	Analysis on-going
Study of high-K states in ²⁵⁴ No using the SAGE spectrometer	11	Analysis finished
Simultaneous in-beam gamma-ray conversion electron spectroscopy of $^{194}\mathrm{Po}$ employing the SAGE spectrometer	7	Analysis on-going
Spectroscopy of the odd-proton nucleus ²⁴⁹ Md and feasibility study for ²⁴³ Es	7	No electrons
Characterization of a new structure in octupole-deformed ²²² Th using gamma-ray and conversion-electron spectroscopy	7	Analysis on-going
Shape Coexistence in Odd-Au Isotopes: In-beam Gamma-ray and Conversion Electron Coincidence Spectroscopy	14	Analysis on-going

OUTLINE

- ✓ Front matter motivation
- ✓ SACRED innovative apparatus
- ✓ SAGE simultaneous e⁻ γ spectroscopy
- ✓ SPEDE $e^-\gamma$ spectroscopy with radioactive beams
- ✓ Backmatter

SPEDE – γe^{-} spectroscopy with radioactive beams

- Completely new concept
- Essential information for analysis of Coulomb excitation data
- To be combined with MINIBALL at HIE-ISOLDE, CERN

SPEDE concept

δ-electron challenge

- δ electrons produced in beam and target collisions
- Detector at backwards angle
- HV on target
- Absorber foil between target and detector
- RIBs lower beam intensity
- β-decay background supressed through coincidences with scattered particles

From concept to design

Si detector and front-end electronics

24 segments, 500µm thick.

Cooled to -15C

¹⁷⁴Yb Coulex test

- ⁴⁰Ar on ¹⁷⁴Yb
- E_{beam} 4.1MeV/u
- I_{beam} ~40E6pps
- Aluminised Mylar foil
- Tests with no high-voltage and 5kV on target

High-voltage on/off

Particle detector array

Particle gated electron singles

SPEDE at MINIBALL

Future prospects

- Number of arrays developed (also mini-Oranges, SPICE, ULESE...)
- Experimental programme will continue
- Experiments with radioactive beams (SPICE, SPEDE)
- Recoil shadow method (lifetimes)
- Lenghty beam times

Acknowledgements

SUOMEN AKATEMIA

