Thermodynamic and electromagnetic properties of nuclei

Magne Guttormsen Department of Physics University of Oslo, Norway

Th and U experiment at OCL

 12 MeV
 d
 on ²³²Th

 24 MeV ³He
 on ²³²Th

 15 MeV
 d
 on ²³⁸U

M.Guttormsen, A.Bürger, T.E.Hansen, N.Lietaer, NIM A648(2011)168

The Oslo method

Simultaneous extraction of NLD and γ SF

²³²Th(*d*,*p*)²³³Th

Oslo method:

M. Guttormsen et al., NIM A374 (1996) 371
M. Guttormsen et al., NIM A255 (1987) 518
A. Schiller et al., NIM A447 (2000) 498
A.C. Larsen et al., Phys. Rev. C 83, 034315 (2011)

Assumption for the extraction of primary γ-spectra

From total to primary *y*-ray matrix

Primary *γ*-ray matrix

$P(E,E_{\gamma}) = \rho(E_f) \cdot T(E_{\gamma})?$

Thermodynamics

Constant-temperature level densities

Constant-temperature level densities

Level density and entropy

 $S(E) = k_B \ln W(E) \propto \ln \Gamma(E)$

M. Guttormsen et al., PRC 88, 024307 (2013)

Temperature and heat capacity

 $C_V(E) = (\P T / \P E)^{-1}$

₩

3.5

$$T(E) = (\P S / \P E)^{-1}$$

γ-ray strength functions

$$f(E_g) = \frac{1}{2\rho} \frac{T(E_g)}{E_g^3}$$

The scissors resonance

M1 scissors resonance mode K. Heyde et al., Rev. Mod. Phys. **82**, 2365 (2010) Sum rules: Enders et al., PRC **71**, 014316 (2005) Strength and centroid depend on deformation

Guttormsen et al., PRC **89**, 014302 (2014) Guttormsen et al., PRL 109, 162503 (2012)

Scissors resonance, $B(M1) = 8-11 \mu_N^2$

Applications

Astrophysics, nuclear energy and radioactive waste

(n, γ) cross sections

Recent achievement and outlook

The new β-Oslo method @ NSCL/MSU

- Implant a neutron-rich nucleus in a total-absorption
 spectrometer
 - Measure β in coincidence with γ's from the daughter nucleus

⁷⁶Ge primary beam, 130 MeV/nucleon on Be target ⁷⁶Ga: $T_{1/2}$ = 32.6s; Q_{β} = 6.916 MeV (∑ex) ∭× 6000 7000 Beta-decay of ⁷⁶Ga => ⁷⁶Ge 10³ 5000 10² 4000 3000 10 2000 45 mm 1000 1000 2000 30004000 5000 6000 7000 E_v (keV) Total absorption spectrometer SuN A. Spyrou, et al., A. Simon et al, NIM A 703, 16 (2013) Phys. Rev. Lett. 113, 232502 (2014)

(n, γ) reaction rates with β -Oslo method

A. Spyrou et al., Phys. Rev. Lett. 113, 232502 (2014)

Low-energy y-enhancement in rare-earth nuclei

A. Simon et al., STARLiTER Clover detectors,

25 MeV (p, d) reaction, Cyclotron Institute of Texas A&M University

Scissors resonance in superheavy nuclei?

Proposal approved @ JYFL – JR137: "Search for the M1 Scissors Mode in ²⁵⁴No"

Fusion-evaporation reaction $^{208}Pb(^{48}Ca,2n)^{254}No \implies$ Tag recoils (^{254}No), look for γ -rays in coincidence

Summary

NLD	 Constant-temperature level densities Total entropy S and single-particle entropy ΔS Nuclear temperature T and heat capacity C_v
γSF	 Scissors strength of B(M1) ≈ 8 -11 μ_N² at E_γ ≈ 2 MeV Splits into two components
Applications	• γ SF + NLD predict accurate (<i>n</i> , γ) cross sections
Outlook	 Far from stability, new detectors and methods Funding for 30 3.5x8" LaBr₃ in CACTUS

A great working team!

M. Aiche, F.L. Bello Garrote, L.A. Bernstein, D. Bleuel, Y. Byun, Q. Ducasse, T.K. Eriksen,
F. Giacoppo, A. Görgen, F. Gunsing, T.W. Hagen, B. Jurado, S.N. Liddick, M. Klintefjord,
A.C. Larsen, L. Lebois, F. Naqvi, H.T. Nyhus, G. Perdikakis, T. Renstrøm, S.J. Rose, E.
Sahin, A. Simon, A. Spyrou, S. Siem, T.G. Tornyi, G.M. Tveten, A. Voinov, M. Wiedeking and J.N. Wilson

University of Oslo, CENBG Gradignan, LLNL, Ohio University, IPN Orsay, CEA Saclay, iThemba LABS, NSCL/MSU, University of Notre Dame

