The Triangular $\boldsymbol{\Omega}_{3 n}$ Symmetry of ${ }^{12} \underline{C}$

Moshe Gai UConn and Yale http://astro.uconn.edu moshe.gai@yale.edu

1. Happy (Semi) Retirement Peter
2. The Algebraic Cluster Model (ACM)
3. $\boldsymbol{D}_{3 \mathrm{~h}}$ Symmetry of ${ }^{12} \mathrm{C}$
4. The O-TPC Detector
5. Measurements With Gamma-Beams (HI $\gamma \mathrm{S}$ at Duke, ELI-NP in Bucharest)
6. Outlook

Reflections on the atomic nucleus, Liverpool, July 29, 2015

A (Personal) Brief Review of The Cluster Model

Did the era of Nuclear Physics Start in 1932? (James Chadwick discovery of the neutron)

1930	Gamow's Theory of Alpha-Decay
1931	Gamow's Apha-Cluster Model of Nuclei
1937	Hafstadt and Teller John Wheeler
\ldots	Fred Hoyle $\left({ }^{12} \mathrm{C}\right)$ 1953 1959
Wildermuth $\left({ }^{8} \mathrm{Be}\right)$ D. Allan Bromley ($\left.{ }^{12} \mathrm{C}+{ }^{12} \mathrm{C}\right)$ "Nuclear Molecule"	
\ldots	David Brink $\left({ }^{20} \mathrm{Ne} \ldots\right)$
1966	Bijker and Iachello/ "New Chapter of the Cluster Model"/ anonymous

Iachello-Levine (1995)

(a)

(b)

J. Chem. Phys., Vol. 77, No. 6, 15 September 1982

The Broad State Issue

Also note ab initio EFT calculations on the lattice of 10 MeV Broad 2 ${ }^{+}$in ${ }^{12} \mathrm{C}$

Spectrum of the (Symmetric) Triangular Spinning Top:

Molecular Physics: H^{+}Molecule
Hadron Structure: Three Quark Model
Nuclear Structure: ${ }^{12} \mathrm{C}$ Three Alpha-Particles

Rotation-Vibration Spectrum of the

 Three Alpha Triangular Spinning TopU(7) Model
R. Bijker and F. Iachello; Ann. Phys. 298(2002)334

DFELL \& HIGS

9.55 MeV

ELI-NP, July 18, 2014, Magurele, Bucharest, Romania

UCL

Optical Readout TPC (O-TPC)

Opto-Electronic Chain

PMT-L

Drift

 CO2(80\%) $) 150$ torr $\left.+\mathrm{N}_{2}(20 \%)\right\}$$(\mathbf{H I} \gamma \mathrm{S})$

Multiplication
Drift

October 7, 2006/ Avery Point

O-TPC at the LNS at Avery Point

O-TPC at HI γ S at TUNL/ Duke

April 3, 2008/ HI γ S at TUNL, Duke University

M. Gai et al.; JINST 5(2010)12004

CCD Image

Longitudinal Projection

Longitudinal Pixel ($\mathbf{1 . 2 8}$ pixels/mm)

Transverse Projection

Summed PMT Signals
(Out of Plane Angle - β)

W.R. Zimmerman et al.; Phys. Rev. Lett. 110(2013)152502

W.R. Zimmerman et al.; Phys. Rev. Lett. 110(2013)152502

Unitarity: $\phi_{12}=\delta_{2}-\delta_{1}+\arctan (\eta / 2)$

Birmingham Measurement:
D.J. Marin-Lambarri, R. Bijker, M. Freer, M. Gai,

Tz. Kokalova, D.J. Parker, C. Wheldon
Phy. Rev. Lett. 113, 012502 (2014)

D.J. Marin-Lambarri, R. Bijker, M. Freer, M. Gai, Tz. Kokalova, D.J. Parker, C. Wheldon, Phys. Rev. Lett. 113, 012502 (2014)

Most Visited - Getting Started ff Facebook ลิ Latest Headlines * (8) Yahoo! Mail - Th...

號 Horde :: Log in
Apple
eBay

This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

IOP Physics World - the member magazine of the Institute of Physics
physicsworld.com

Sign in \mid Forgotten your password? Sign up Contact us

Home News Blog Multimedia In depth Events brightrecruits.com physicsconnect

News archive

-2014
, July 2014
, June 2014
, May 2014
, April 2014
, March 2014
, February 2014
, January 2014
, 2013
, 2012
, 2011
, 2010

- 2009
- 2008
, 2007
, 2006
, 2005
, 2004
, 2003
, 2002
, 2001
, 2000
, 1999
, 1998
, 1997

Carbon nucleus seen spinning in triangular state

Jul 8, 2014 Q 4 comments

The University of Birmingham's cyclotron
Physicists have obtained important new evidence showing that the structure of the carbon-12 nucleus - without which there would be no life here on Earth - resembles that of an equilateral triangle. The evidence was obtained by physicists in the UK, Mexico and the US by measuring a new rapidly spinning rotational state of the nucleus. The finding suggests that the "Hoyle state" of carbon-12, which plays an important role in the creation of carbon in red giant stars, has the same shape too. Recent theoretical predictions, in contrast, had suggested that the Hoyle state is more like an obtuse triangle or "bent arm".

Related stories

Testing the elements of the Big Bang
Sir Fred Hoyle 1915-2001
Carbon's Hoyle state calculated at long last The secret of life

Related links

Reexamination of the excited states of ${ }^{12} \mathrm{C}$

M. Freer, ${ }^{1}$ I. Boztosun, ${ }^{2,{ }^{*}}$ C. A. Bremner, ${ }^{2}$ S. P. G. Chappell, ${ }^{2}$ R. L. Cowin, ${ }^{3}$ G. K. Dillon, ${ }^{3}$ B. R. Fulton, ${ }^{3}$ B. J. Greenhalgh, ${ }^{3}$ T. Munoz-Britton, ${ }^{1}$ M. P. Nicoli, ${ }^{1}$ W. D. M. Rae, ${ }^{2}$ S. M. Singer, ${ }^{1}$ N. Sparks, ${ }^{1}$ D. L. Watson, ${ }^{3}$ and D. C. Weisser ${ }^{4}$
${ }^{1}$ School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
${ }^{2}$ Nuclear and Astrophysics Laboratory, University of Oxford, Keble Road, Oxford OX1 3RH, United Kingdom
${ }^{3}$ Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
${ }^{4}$ Department of Nuclear Physics, The Australian National University, Canberra ACT 0200, Australia (Received 6 June 2007; revised manuscript received 31 July 2007; published 24 September 2007)

An analysis of the ${ }^{12} \mathrm{C}\left({ }^{12} \mathrm{C}, 3 \alpha\right){ }^{12} \mathrm{C}$ reaction was made at beam energies between 82 and 106 MeV . Decays to both the ground state and the excited states of ${ }^{8} \mathrm{Be}$ were isolated, allowing states of different characters to be identified. In particular, evidence was found for a previously observed state at 11.16 MeV . An analysis of the angular distributions of the unnatural parity states at 11.83 and 13.35 MeV , previously assigned $J^{\pi}=2^{-}$, calls into question the validity of these assignments, suggesting that at least one of the states may correspond to $J^{\pi}=4^{-}$. Evidence is also found for 1^{-}and 3^{-}strengths associated with broad states between 11 and 14 MeV .

Viability of Carbon-Based Life as a Function of the Light Quark Mass

Evgeny Epelbaum, ${ }^{1}$ Hermann Krebs, ${ }^{1}$ Timo A. Lähde, ${ }^{2}$ Dean Lee, ${ }^{3}$ and Ulf-G. Meißner ${ }^{2,4,5}$
${ }^{1}$ Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44870 Bochum, Germany
${ }^{2}$ Institut für Kemphysik, Institute for Advanced Simulation, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich, Germany
${ }^{3}$ Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
${ }^{4}$ Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany
${ }^{5}$ JARA—High Performance Computing, Forschungszentrum Jülich, D-52425 Jülich, Germany (Received 18 December 2012; published 13 March 2013)

The Hoyle state plays a crucial role in the helium burning of stars that have reached the red giant stage. The close proximity of this state to the triple-alpha threshold is needed for the production of carbon, oxygen, and other elements necessary for life. We investigate whether this life-essential condition is robust or delicately fine-tuned by measuring its dependence on the fundamental constants of nature, specifically the light quark mass and the strength of the electromagnetic interaction. We show that there exist strong correlations between the alpha-particle binding energy and the various energies relevant to the triple-alpha process. We derive limits on the variation of these fundamental parameters from the requirement that sufficient amounts of carbon and oxygen be generated in stars. We also discuss the implications of our results for an anthropic view of the Universe.

FIG. 3 (color online). Illustration of the initial state Λ. There are 24 equivalent orientations of this bent-arm or obtuse triangular configuration.

University of Connecticut Laboratory for Nuclear Science at Avery Point

Conclusions and Outlook/ Future

All observed ${ }^{12} \mathrm{C}$ states below 15 MeV Are predicted by the U(7) Model/ $\boldsymbol{D}_{3 \mathrm{~h}}$ Symmetry (Except non-clusters 1^{+}states)

Observed in ${ }^{12} \mathrm{C}$:
Ground State Rotational Band: $0^{+}, 2^{+}, 3^{-}, 4^{ \pm} 5^{-}$ Parity doublet: $4^{ \pm}$

Predicted ("Missing") in ${ }^{12} \mathrm{C}$:
Hoyle Band: 3^{-}and 4^{-}
Will determine geometry of Hoyle State (equilateral, obtuse, etc.)
${ }^{12} \mathrm{C}(\mathrm{e}, \mathrm{e}$ ') Measurement at the S-DALINAC "The Missing 3" State"

