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Compact magnets at CERN …
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Measurement
methods
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Hall probes

Advantages
• easy to use, readily available on the market (typical accuracy 1%)
• 1 mm2 sensor area  best suited to detailed maps (e.g. fringe fields)
Drawbacks
• uncertainty better than a few 10-3 require complex and frequent calibration + 

temperature control or compensation
• small probe sensitive to local effects  precise integrals require many points
• precise positioning in translation and angle requires expensive mechanics
• errors in multipolar/fast ramping fields

Commercial Hall probe sensors CERN-made 3D probe with T compensation, 
200-parameter calibration rel = 210-4

Courtesy F. Bergsma, PH/DT
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Fixed and rotating measurement coils

Advantages
• natural choice for time-varying/integral  fields (S/N improves with increasing size, B, dB/dt)
• DC rotating coil: one turn (0.11 s)  full characterization of the field integral within the spanned 

volume: field strength, harmonics, direction and axis 
• typical uncertainty: absolute 10-4 (straight or PCB coils), harmonics 10-5, resolution 10-6

Drawbacks
• not commercially available, specialized in-house winding (or PCB design) required
• special techniques required for strongly curved, or large aspect-ratio gap magnets
• expensive mechanics (non-magnetic, non-conducting shaft, motor) and top-quality electronics 

(digital integrators, programmable amplifiers, angular encoders) necessary to get good results
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Coil bucking

• The accuracy of higher harmonics measured by individual coils may be affected by geometry errors
• Solution = coil bucking (or compensation): suitable linear combinations of coil signals cancel out the 

sensitivity to the main (and lower) harmonics  robustness to mechanical imperfections
• Example: in a perfect quadrupole, average gravity-induced sag  on a radial coil  flux error 

including mainly B1 and B3 components. A four-coil series/anti-series combination cancels out B2

sensitivity  error-free harmonic measurement
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• Arbitrary static coil imperfections: no major concern (effective geometry can be calibrated)
• Position- or time-dependent transversal imperfections  errors  harmonic n=main order
• Position- or time-dependent torsional imperfections   errors  harmonic n=main order -1
• Coil design objective: main=main-1=0, maximize |n| with n>main order
• Additional benefit: common mode rejection, improved S/N (requires separate amplification)
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Example: quadrupole-compensated rotating coil array


1

5
0

 m
m

5× tangential coils

retro-reflector

G10 support tube

• large number of coils made 
to pick well-matched 
equivalent surfaces

• coil parallelism measured 
inside a large dipole

• rotation radius measured 
inside a large quadrupole
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Single Stretched Wire

3× multi-mode systems at CERN (based on FNAL’s 
units used as a reference for LHC cryomagnets)

 classic measurement 
in a quadrupole:

if  𝐴
𝐵
𝐵𝑦𝑑𝑥 = 0, 

then C=magnetic center

0.1 mm CuBe wire

XY translation stages

Advantages
• unique flexibility: the same sensor adapts to any size, shape and length of magnet gap

(limited by the range of the translation stages) 
• unique capability to measure longitudinal center + pitch and yaw axis angles in lenses and 

solenoids (counter-directional wire movements)
• unique sub-micron sensitivity for axis localization in vibrating mode at resonance
• metrological reference for integrated field strength, axis and direction in high-field magnets
• Very promising ongoing R&D:

- integrated harmonics in vibrating mode
- longitudinal field profiles from measurements in vibrating mode at multiple frequencies

Drawbacks
• Equivalent to 1 turn-coil only  low sensitivity of field integrals in short/weak magnets
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Recent development: oscillating stretched wire

• Stretched-wire system with AC current passed through 
the wire  Lorentz force  oscillation  BdL

• zero amplitude = wire on magnetic axis
• ideal method for very small aperture magnets (CLIC)
• integrated harmonics by stepwise scan around a circle

(quasi-static regime  insensitive to frequency 
fluctuations)

Comparison with rotating coil
10-3 RMS difference
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Challenges
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Impact of low-consumption techniques on magnetic measurements

Excitation source (Cu, PM or SC), current density and power consumption: not important per se 
(assuming of course that temperature effects are controlled !)

Small gaps

Low RMS

fast ramps

low 
flat-bottom

• Hall probes (very) difficult
• Critical mechanical tolerances
• Reduced n. of turns, weak 

signals

• Hall probes hardly possible at 
all (bandwidth, dynamic 
range)

• Good coil signals, but RC 
complicated (remanent lost)

• Extrapolation from low field 
measurements

• current/magnet cycle 
reproducibility issues proposed CERN PS Booster upgrade cycle
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Small gaps
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38 mm QIMM (Quadrupole Industrial Magnetic Measurement) 

MQW warm IR quad

38 mm coil array approaches the limit of traditional fabrication techniques

center eaten away due to alignment pin holes

groove walls filed away after winding

standard 4+1 coil array must be 
compressed radially

weakened mechanics 

up to 4/5 waste (also due to fragile 20-wire cable) !

additional size constraint: standard connection PCB
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Linac 4 test bench – Coil head prototype #1
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ABS coil

CM P coil

• 19 × 200 mm head based on 
Linac2 design (flat multi-wire cable 
higher winding density)

• 2 nested coils with B1 + B2 bucking 
(same ATOT, R0)

• longitudinal variations up to 
6% width, 20 mrad twist

64-turns outer coil 
(absolute measurement)

32-turns inner coil 
(compensated measurement)

Head currently used to measure prototype and pre-series Linac 4 quads
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Linac 4 test bench – Coil prototype #2

coil #1 coil #3

through holes to wind coil #3

PCB connector slot

• Skillful manual winding operation required
• Effective area: longitudinal variations 0.2% 
• Effective radius: longitudinal variations 1%  (outer coils), 0.1 mm (central coils)
• Customary average area/radius calibration does not work very well: a more laborious in-situ 

calibration inside the target magnet is essential to get accurate results
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Innovative miniature coils for CLIC quadrupoles

CLIC QD0 prototype 200-turn coils (1/6 density w.r.t. 30 m wire)

3-coil dipole- and quadrupole- bucked array
can be chained to measure long magnets at once

• Industrial PCB production; difficult machining to install ball bearings required
• Effective area: reproducibility 310-4

, longitudinal variations 0.5% (sag, twist ?)
• Effective radius: variations up to 3% (outer coils), 0.8 mm (central coil)
• Analog compensation cannot work

Lower coil

3× 64-layer PCB stack coils
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Linac4/CLIC harmonic coil test bench 

• Developed for small-aperture permanent-magnet and fast-pulsed quads
• 8/19 mm, 150 to 400 mm long quadrupole-bucked coils 
• Harmonic measurements in DC (continuously rotating coil) or fast-pulsed (stepwise rotating) mode. 
• In-situ calibration technique to improve accuracy despite geometrical coil imperfections

viscous 
damper

1:50 gearbox

stepper motor

demountable coupling

openable bearing

sliding supports

absolute/incremental 
through angular encoder

slip ring

8 mm coil shaft

XY translation stage for in-situ coil calibration
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Random errors in rotating coil measurements
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rc

Scaling of harmonic uncertainty with gap diameter 

number of turns available for the coils i.e. 
Ac 2

absolute harmonic coefficient uncertainty scales with:
harmonic order, -1 -2

𝑟𝑐 ≈
∅

3
(typically) Integrated flux change  constant 

(peak pole field, rotation/translation speed, 
magnet length being equal)
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mechanical manufacturing tolerances, 
static and dynamic deformations, vibrations, 

alignment, temperature drifts   → rc constant
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Errors in stretched wire measurements
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Flux  integrated over the wire length Lw
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uncertainty of gradient and magnetic axis scales with -1

Caveat: increasing too much x 
get too close to the poles, harmonic
errors perturb the result:
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Estimation of systematic errors

• Simple cases: transverse and 
angular offsets

• Repeat the measurement by 
flipping the magnet around a 
vertical axis

• Reversing y is seldom possible, 
vertical offset is much harder
to determine
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Estimation of systematic errors

turn around longitudinal axis by 360°
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• random uncertainty: 
electrical and mechanical noise

• systematic uncertainty:  mechanical coil imperfections = f()  
(weight-induced sag, ball-bearing eccentricity, torsional
vibrations …)

• “true” value – may be averaged from any two 
measurements 180° apart
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Low RMS
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Stepwise pulsed-mode harmonic coils

• New technique being developed to measure dynamically in the nominal powering conditions
• Requires: precise angular positioning, repeatability of power cycles 
• Alternative solutions being evaluated:

- scaling/time shifting I(t) and (t) to recover errors by post-processing
- differential mode measurement (additional fixed coil as a reference for scaling)
- simultaneous rotation/current pulsing (reasonable for pulse lengths 0.11 s)
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Extrapolation of low-field measurements

• Simplest solution: use standard DC rotating coils or DC/AC stretched wire  extrapolate to high 
fields (flat-top conditions must be equivalent to DC when the beam passes i.e. eddy current must 
decayed) 

• Transfer function is perturbed by eddy current losses + remanent field effects
• So far used only for Linac4 EMQs (0.5% tolerance)

Example: 

GdL transfer function of Linac4 EMQ
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Impact of background fields on low-field DC measurements

• Example: CERN linac4 TL EMQs: B00.05 mT, Gd=0.14 T @ 9 A (nominal 120 A), Lc=1.2 m, Lm=0.3 m

 ∆𝑧
𝐵0 𝐿𝑐−𝐿𝑀

 𝐺𝑑ℓ
 0.3 mm

• Can be suppressed by flipping around the magnet/inverting the current
• Remanent field in the poles adds up: the ffect can also be suppressed taking care about cycling
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Cycling issues in fast-ramping magnets
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• Example: fast capacitive discharge powering of Linac4 
inter-tank EMQs

• current spikes lead minor hysteresis loops 
field reproducibility degradation

• oscillations at the end of the ramp-down may provide a 
beneficial free de-gaussing, if symmetrical

• the overshoot at the end of the ramp-up may give a more 
stable flat-top, but makes it less reproducible

t (s)

I (A)

I (A)

I (A)

GdL (T) – Hysteresis cycle

GdL (T)

Hysteresis cycle (linear part removed)

A

B

A

B

A

B

(uncontrolled) 
flat-bottom oscillations

initial state (0,0)

remanent GdL = 0.002 T
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Feed-forward control of eddy currents

• Eddy currents can be partially, totally or over-canceled by a linear excitation current overshoot at 
the end of ramp-up

• Example: stable flat-top reached at the time cost of 1.5 (to be compared with exponential 
decay time 3)

• Caveats: 
- power converter needs high dV/dt;
- the maximum working point is increased considerably, at the risk of saturation
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Cycle reproducibility in MedAustron main bending dipole

Courtesy G. Golluccio

large fluctuations due to history-dependent residual field
reproducibility degrades at low field

saturation tends to erase previous magnetic history
 better reproducibility at high field

ℓ𝑚(𝐼) =
1

𝐵0(𝐼)
 
−∞

∞

𝐵 𝐼, 𝑠 𝑑𝑠

eddy current 
decay (=0.2 s)

m drops due to 
saturation in the ends

m diverges due to
Br at center << integral
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Summary
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Summary

• Measurement systems for small gaps (<40 mm) currently being developed at CERN
• Main limitations:

- mechanical tolerances for rotating coil systems
- mechanical tolerances and various non-linear effects for stretched-wire systems

• reasonable performance at 20 mm, still work to do at 8 mm 
• many sources of systematic errors can be corrected by flipping the magnet around or 

upside/down

• Techniques for fast cycled magnets are being developed too (Linac EMQs)
• Open issues: precise extrapolation of main component, dynamic behavior of field 

harmonics/magnetic center
• The impact of new current waveforms on magnetic performance should be evaluated early 

in the design cycle:
- extending dynamic range at the bottom degrades reproducibility
- uncontrolled transients degrade the reproducibility
- prototype magnets should ideally be tested along with their prototype power supplies !
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