Magnetic measurement challenges for compact & low-consumption magnets

M Buzio on behalf of the Magnetic Measurement Section

(CERN, Technology Department, Magnet, Cryostats and Superconductors Group)

Contents

1 – Introduction

Review of major measurement techniques: Hall probes, fixed/rotating coils, stretched wires

2 – Challenges

Main issues arising small apertures & low RMS and their solution

3 – Summary & References

"Magnetic measurement challenges for compact & low-consumption magnets" marco.buzio@cern.ch Workshop on Compact and Low Consumption Magnet Design, November 26-28, 2014, CERN 1/32

MAGNETIC MEASUREMENT

SECTION cern.ch/mm

Compact magnets at CERN …

"Magnetic measurement challenges for compact & low-consumption magnets" marco.buzio@cern.ch Workshop on Compact and Low Consumption Magnet Design, November 26-28, 2014, CERN 2/32

Measurement methods

"Magnetic measurement challenges for compact & low-consumption magnets" marco.buzio@cern.ch Workshop on Compact and Low Consumption Magnet Design, November 26-28, 2014, CERN 3/32

Hall probes

Advantages

- easy to use, readily available on the market (typical accuracy 1%)
- \sim 1 mm² sensor area \rightarrow best suited to detailed maps (e.g. fringe fields)

Drawbacks

- uncertainty better than a few $\sim 10^{-3}$ require complex and frequent calibration + temperature control or compensation
- small probe sensitive to local effects \rightarrow precise integrals require *many* points
- precise positioning in translation and angle requires expensive mechanics
- errors in multipolar/fast ramping fields

Fixed and rotating measurement coils

Advantages

- natural choice for time-varying/integral fields (S/N improves with increasing size, B, dB/dt)
- DC rotating coil: one turn $(0.1~1~s) \rightarrow$ full characterization of the field integral within the spanned volume: **field strength, harmonics, direction and axis**
- typical uncertainty: absolute **10-4** (straight or PCB coils), harmonics **10-5** , resolution **10-6**

Drawbacks

- not commercially available, specialized in-house winding (or PCB design) required
- special techniques required for strongly curved, or large aspect-ratio gap magnets
- expensive mechanics (non-magnetic, non-conducting shaft, motor) and top-quality electronics (digital integrators, programmable amplifiers, angular encoders) necessary to get good results

Coil bucking

- The accuracy of higher harmonics measured by individual coils may be affected by geometry errors
- Solution = **coil bucking** (or compensation): suitable linear combinations of coil signals cancel out the sensitivity to the main (and lower) harmonics \rightarrow robustness to mechanical imperfections
- Example: in a perfect quadrupole, average gravity-induced sag δ on a radial coil \rightarrow flux error including mainly B_1 and B_3 components. A four-coil series/anti-series combination cancels out B_2 sensitivity \rightarrow error-free harmonic measurement

- Arbitrary *static* coil imperfections: no major concern (effective geometry can be calibrated)
- **•** Position- or time-dependent **transversal imperfections** → **errors** ∞ harmonic n=main order
- Position- or time-dependent **torsional imperfections errors harmonic n=main order -1**
- Coil design objective: $\kappa_{\sf main} = \kappa_{\sf main-1} = 0$, maximize $|\kappa_{\sf n}|$ with n>main order
- Additional benefit: **common mode rejection, improved S/N** (requires separate amplification)

Example: quadrupole-compensated rotating coil array

5× tangential coils

- large number of coils made to pick well-matched equivalent surfaces
- coil parallelism measured inside a large dipole
- rotation radius measured inside a large quadrupole

"Magnetic measurement challenges for compact & low-consumption magnets" marco.buzio@cern.ch EUCARD² Workshop on Compact and Low Consumption Magnet Design, November 26-28, 2014, CERN 7/32

Single Stretched Wire

3× multi-mode systems at CERN (based on FNAL's units used as a reference for LHC cryomagnets)

R

classic measurement in a quadrupole: if $\int_A^B B_y dx = 0$, then C=magnetic center

Advantages

- unique flexibility: the same sensor adapts to any size, shape and length of magnet gap (limited by the range of the translation stages)
- unique capability to measure longitudinal center + pitch and yaw axis angles in lenses and solenoids (counter-directional wire movements)
- unique sub-micron sensitivity for axis localization in vibrating mode at resonance
- metrological reference for integrated field strength, axis and direction in high-field magnets
- Very promising ongoing R&D:
	- integrated harmonics in vibrating mode
	- longitudinal field profiles from measurements in vibrating mode at multiple frequencies

Drawbacks

Equivalent to 1 turn-coil only \rightarrow low sensitivity of field integrals in short/weak magnets

Recent development: oscillating stretched wire

Linac4 R1 PMO

XY optical wire position detectors

- Stretched-wire system with AC current passed through the wire \rightarrow Lorentz force \rightarrow oscillation \propto BdL
- zero amplitude = wire on magnetic axis
- ideal method for very small aperture magnets (CLIC)
- integrated harmonics by stepwise scan around a circle (quasi-static regime \rightarrow insensitive to frequency fluctuations)

"Magnetic measurement challenges for compact & low-consumption magnets" marco.buzio@cern.ch Workshop on Compact and Low Consumption Magnet Design, November 26-28, 2014, CERN 9/32

Challenges

"Magnetic measurement challenges for compact & low-consumption magnets" marco.buzio@cern.ch Workshop on Compact and Low Consumption Magnet Design, November 26-28, 2014, CERN 10/32

Impact of low-consumption techniques on magnetic measurements

Excitation source (Cu, PM or SC), current density and power consumption: not important *per se* (assuming of course that temperature effects are controlled !)

Small gaps

- Hall probes (very) difficult
- Critical mechanical tolerances
- Reduced n. of turns, weak signals

- Hall probes hardly possible at all (bandwidth, dynamic range)
- Good coil signals, but RC complicated (remanent lost)
- Extrapolation from low field measurements
- current/magnet cycle proposed CERN PS Booster upgrade cycle **the cycle** and the cycle of the control of the cycle of the cycle

"Magnetic measurement challenges for compact & low-consumption magnets" marco.buzio@cern.ch Workshop on Compact and Low Consumption Magnet Design, November 26-28, 2014, CERN 11/32

Small gaps

"Magnetic measurement challenges for compact & low-consumption magnets" marco.buzio@cern.ch Workshop on Compact and Low Consumption Magnet Design, November 26-28, 2014, CERN 12/32

38 mm coil array approaches the limit of traditional fabrication techniques

additional size constraint: standard connection PCB

"Magnetic measurement challenges for compact & low-consumption magnets" marco.buzio@cern.ch Workshop on Compact and Low Consumption Magnet Design, November 26-28, 2014, CERN 13/32

Head currently used to measure prototype and pre-series Linac 4 quads

EUCARD²

CM P coil **64-turns outer coil (absolute measurement) 32-turns inner coil (compensated measurement)**

- **19 × 200 mm head based on Linac2 design (flat multi-wire cable higher winding density)**
- 2 nested coils with $B_1 + B_2$ bucking **(same ATOT, R⁰)**

MAGNETIC MEASUREMENT

SECTION cern.ch/mm

• **longitudinal variations up to 6% width, 20 mrad twist**

"Magnetic measurement challenges for compact & low-consumption magnets" marco.buzio@cern.ch Workshop on Compact and Low Consumption Magnet Design, November 26-28, 2014, CERN 14/32

Linac 4 test bench – Coil prototype #2

- Skillful manual winding operation required
- Effective area: longitudinal variations **0.2%**
- Effective radius: longitudinal variations **1%** (outer coils), 0.1 mm (central coils)
- Customary average area/radius calibration does not work very well: a more laborious *in-situ* calibration inside the target magnet is essential to get accurate results

"Magnetic measurement challenges for compact & low-consumption magnets" marco.buzio@cern.ch Workshop on Compact and Low Consumption Magnet Design, November 26-28, 2014, CERN 15/32

Innovative miniature coils for CLIC quadrupoles

- Industrial PCB production; difficult machining to install ball bearings required
- Effective area: reproducibility **310-4** , longitudinal variations **0.5%** (sag, twist ?)
- Effective radius: variations up to **3%** (outer coils), 0.8 mm (central coil)
- Analog compensation cannot work

"Magnetic measurement challenges for compact & low-consumption magnets" marco.buzio@cern.ch Workshop on Compact and Low Consumption Magnet Design, November 26-28, 2014, CERN 16/32

Linac4/CLIC harmonic coil test bench

- Developed for small-aperture permanent-magnet and fast-pulsed quads
- Ø8/19 mm, 150 to 400 mm long quadrupole-bucked coils
- Harmonic measurements in DC (continuously rotating coil) or fast-pulsed (stepwise rotating) mode.
- *In-situ* calibration technique to improve accuracy despite geometrical coil imperfections

SECTION cern.ch/mm

Workshop on Compact and Low Consumption Magnet Design, November 26-28, 2014, CERN 17/32

Random errors in rotating coil measurements

"Magnetic measurement challenges for compact & low-consumption magnets" marco.buzio@cern.ch Workshop on Compact and Low Consumption Magnet Design, November 26-28, 2014, CERN 18/32

MAGNETIC MEASUREMENT SECTION cern.ch/mm

Scaling of harmonic uncertainty with gap diameter

number of turns available for the coils i.e.

 $A_c \propto \varnothing^2$

mechanical manufacturing tolerances, static and dynamic deformations, vibrations, alignment, temperature drifts $\rightarrow \sigma_{rc}$ constant

$$
\left(\frac{\sigma_{cn}}{C_n}\right)^2 = \left(\frac{\sigma_{Ac}}{A_c}\right)^2 + (n-1)^2 \left(\frac{\sigma_{rc}}{r_c}\right)^2 + \left(\frac{\sigma_{\psi}}{\psi}\right)^2
$$

 $r_c \approx \frac{\emptyset}{3}$ 3

Integrated flux change \sim constant (peak pole field, rotation/translation speed, magnet length being equal)

absolute harmonic coefficient uncertainty scales with: \blacksquare harmonic order, \varnothing^{4} ~ \varnothing^{4}

"Magnetic measurement challenges for compact & low-consumption magnets" marco.buzio@cern.ch Workshop on Compact and Low Consumption Magnet Design, November 26-28, 2014, CERN 19/32

MAGNETIC MEASUREMENT

SECTION cern.ch/mm

Wire moved in two steps of width $\Delta x \propto \emptyset$ inside a quadrupole of unknown gradient *G Coordinate frame offset from magnetic axis by unknown amount* x_0 Flux Φ integrated over the wire length L_w

$$
\begin{cases}\n\Phi_1 = L_w \int_{-\Delta x}^0 B_y dx & G = \frac{\Phi_1 - \Phi_2}{\Delta x^2} \\
\Phi_2 = L_w \int_0^{\Delta x} B_y dx & x_0 = \frac{\Delta x}{2} \frac{\Phi_1 + \Phi_2}{\Phi_1 - \Phi_2}\n\end{cases}
$$

$$
\left(\frac{\sigma_G}{G}\right)^2 = \frac{1}{2} \left(\frac{\sigma_{\Phi}}{\Phi}\right)^2 + 2 \left(\frac{\sigma_{\Delta x}}{\Delta x}\right)^2
$$

$$
\left(\frac{\sigma_{x_0}}{x_0}\right)^2 = \left(\frac{\sigma_{\Phi}}{\Phi}\right)^2 + \left(\frac{\sigma_{\Delta x}}{\Delta x}\right)^2
$$

uncertainty of gradient and magnetic axis scales with \varnothing ⁻¹

Caveat: increasing too much $\Delta x \rightarrow$ get too close to the poles, harmonic errors perturb the result:

$$
\frac{\frac{1}{2}\left(\int G_x \, dl + \int G_y \, dl\right)}{\int G \, dl} = 1 + \frac{2}{3} \left(\frac{\Delta x}{r_{ref}}\right)^4 \frac{b_6}{10^4} + \frac{2}{5} \left(\frac{\Delta x}{r_{ref}}\right)^8 \frac{b_{10}}{10^4} + \cdots
$$

"Magnetic measurement challenges for compact & low-consumption magnets" marco.buzio@cern.ch Workshop on Compact and Low Consumption Magnet Design, November 26-28, 2014, CERN 20/32

example of field direction calibration: 180° rotation around reference axis (gravity *or* mechanical support)

EUCARD²

Estimation of systematic errors

- Simple cases: transverse and angular offsets
- Repeat the measurement by flipping the magnet around a vertical axis
- Reversing y is seldom possible, vertical offset is much harder to determine

$$
\begin{cases}\n\alpha_1^{meas} = +\alpha - \Delta \alpha \\
\alpha_2^{meas} = -\alpha - \Delta \alpha\n\end{cases} \Rightarrow
$$

$$
\begin{cases}\n\alpha = \frac{\alpha_1^{meas} - \alpha_2^{meas}}{2} \\
\Delta \alpha = -\frac{\alpha_1^{meas} + \alpha_2^{meas}}{2}\n\end{cases}
$$

"Magnetic measurement challenges for compact & low-consumption magnets" marco.buzio@cern.ch Workshop on Compact and Low Consumption Magnet Design, November 26-28, 2014, CERN 21/32

Estimation of systematic errors

EUCARD

- random uncertainty: electrical and mechanical noise
- systematic uncertainty: mechanical coil imperfections = $f(\theta)$ (weight-induced sag, ball-bearing eccentricity, torsional vibrations …)
- "true" value $-\frac{may}{b}$ e averaged from any two measurements 180° apart

"Magnetic measurement challenges for compact & low-consumption magnets" marco.buzio@cern.ch Workshop on Compact and Low Consumption Magnet Design, November 26-28, 2014, CERN 22/32

MAGNETIC MEASUREMENT

SECTION cern.ch/mm

Low RMS

"Magnetic measurement challenges for compact & low-consumption magnets" marco.buzio@cern.ch Workshop on Compact and Low Consumption Magnet Design, November 26-28, 2014, CERN 23/32

Stepwise pulsed-mode harmonic coils

- New technique being developed to measure dynamically in the nominal powering conditions
- Requires: precise angular positioning, repeatability of power cycles
- Alternative solutions being evaluated:

EUCARD

- scaling/time shifting I(t) and Φ (t) to recover errors by post-processing
- differential mode measurement (additional fixed coil as a reference for scaling)
- simultaneous rotation/current pulsing (reasonable for pulse lengths $0.1~1$ s)

"Magnetic measurement challenges for compact & low-consumption magnets" marco.buzio@cern.ch Workshop on Compact and Low Consumption Magnet Design, November 26-28, 2014, CERN 24/32

SECTION cern.ch/mm

- Simplest solution: use standard DC rotating coils or DC/AC stretched wire \rightarrow extrapolate to high fields (flat-top conditions must be equivalent to DC when the beam passes i.e. eddy current must decayed)
- Transfer function is perturbed by eddy current losses + remanent field effects
- So far used only for Linac4 EMQs $(\pm 0.5\%$ tolerance)

"Magnetic measurement challenges for compact & low-consumption magnets" marco.buzio@cern.ch Workshop on Compact and Low Consumption Magnet Design, November 26-28, 2014, CERN 25/32

MAGNETIC MEASUREMENT SECTION cern.ch/mm

Impact of background fields on low-field DC measurements

- Example: CERN linac4 TL EMQs: $B_0 \approx 0.05$ mT, $\sqrt{G}d\ell = 0.14$ T @ 9 A (nominal 120 A), L_c=1.2 m, L_m=0.3 m $\rightarrow \Delta z \approx \frac{B_0 (L_c - L_M)}{6.0 \times 10^{-4}}$ $\frac{(L_c - L_M)}{\int G d\ell} \approx 0.3$ mm
- Can be suppressed by flipping around the magnet/inverting the current
- Remanent field in the poles adds up: the ffect can also be suppressed taking care about cycling

Cycling issues in fast-ramping magnets

- Example: fast capacitive discharge powering of Linac4 inter-tank EMQs
- current spikes lead minor hysteresis loops \rightarrow field reproducibility degradation
- oscillations at the end of the ramp-down may provide a beneficial free de-gaussing, *if* symmetrical
- the overshoot at the end of the ramp-up may give a more stable flat-top, but makes it less reproducible

"Magnetic measurement challenges for compact & low-consumption magnets" marco.buzio@cern.ch Workshop on Compact and Low Consumption Magnet Design, November 26-28, 2014, CERN 27/32

- Eddy currents can be partially, totally or over-canceled by a linear excitation current overshoot at the end of ramp-up
- Example: stable flat-top reached at the time cost of \sim 1.5 τ (to be compared with exponential decay time $\sim 3\tau$)
- Caveats:
	- power converter needs high dV/dt;
	- the maximum working point is increased considerably, at the risk of saturation

SECTION cern.ch/mm

Workshop on Compact and Low Consumption Magnet Design, November 26-28, 2014, CERN 28/32

large fluctuations due to history-dependent residual field reproducibility degrades at low field

Courtesy G. Golluccio

"Magnetic measurement challenges for compact & low-consumption magnets" marco.buzio@cern.ch Workshop on Compact and Low Consumption Magnet Design, November 26-28, 2014, CERN 29/32

MAGNETIC MEASUREMENT SECTION cern.ch/mm

Summary

"Magnetic measurement challenges for compact & low-consumption magnets" marco.buzio@cern.ch Workshop on Compact and Low Consumption Magnet Design, November 26-28, 2014, CERN 30/32

Summary

- Measurement systems for **small gaps** (\varnothing <40 mm) currently being developed at CERN
- Main limitations:
	- mechanical tolerances for rotating coil systems
	- mechanical tolerances and various non-linear effects for stretched-wire systems
- reasonable performance at \varnothing 20 mm, still work to do at \varnothing 8 mm
- many sources of systematic errors can be corrected by flipping the magnet around or upside/down
- Techniques for **fast cycled magnets** are being developed too (Linac EMQs)
- Open issues: precise extrapolation of main component, dynamic behavior of field harmonics/magnetic center
- The impact of new current waveforms on magnetic performance should be evaluated early in the design cycle:
	- extending dynamic range at the bottom degrades reproducibility
	- uncontrolled transients degrade the reproducibility
	- prototype magnets should ideally be tested along with their prototype power supplies !

- [1] M. Buzio, S. Sanfilippo *et al.*, SMALL-DIAMETER ROTATING COILS FOR FIELD QUALITY MEASUREMENTS IN QUADRUPOLE MAGNETS, XX IMEKO TC-4 International Symposium, September 15-17, 2014, Benevento, Italy
- [2] S. Kasaei *et al.,* MAGNETIC CHARACTERIZATION OF FAST-PULSED ELECTROMAGNETIC QUADRUPOLES FOR LINAC4 AT CERN, Proceedings of Linac14, CERN, September 2014

