



# Beam dynamics requirements for future accelerators

### Y. Papaphilippou, CERN

Workshop on Compact and Low Consumption Magnet Design for Future Linear and Circular Colliders, CERN, November 28<sup>th</sup>, 2014

## Outline

- Accelerator performance parameters
- Colliders and luminosity
  - Field quality and dynamic aperture
- □ High-power rings and average beam power
  - Going super-ferric
  - Optimising magnet gaps for required intensity
  - Raising the energy
  - Magnet fringe fields
- Low emittance lepton rings
  - Magnets for reaching ultra-low emittance
  - Optimising magnet parameters for collective effects
- Ring Higgs factories
  - Booster ring for top-up

### Performance parameters

| Colliders<br>(and their<br>injectors) | - Luminosity (brightness) $\mathcal{L} = \frac{N_1 N_2 f n_b}{4\pi\sigma_x\sigma_y}$ | Extreme<br>intensity within<br>ultra-low beam<br>dimensions |
|---------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------|
| High-<br>power<br>rings               | • Beam power $P = q f_r N_p E_k$                                                     |                                                             |
| X-ray<br>storage<br>rings             | - Photon brilliance $B = \frac{N_p}{4\pi^2 \bar{\epsilon_x} \bar{\epsilon_y}}$       | Non-linear and<br>collective effects<br>become              |

Special compact and low consumption magnet design - YP predominant

### Colliders



### High integrated luminosity

#### The highest energy

- Proportional to field (and bending radius for rings), the highest field (for the longest ring)
- Heat loads due to synchrotron radiation

#### Lowest beam sizes in IP

- High energy helps for geometrical emittance reduction (but injection energy is the driver)
- Smallest beta function requires strong focusing around the IP
- Small emittance helps reducing magnet gap but beta functions (beam sizes) get extremely high in IP magnets

#### High total intensity for both beams

- Radio-activation (beam loss) putting stringent requirements in amount of lost particles whose motion is governed by non-linear fields (field quality)
- □ Integrated luminosity requires good lifetime (hours)
- □ Injection time is still long (several minutes) and larger beam size

#### High number of bunches

Separated beam pipe to avoid beam-beam effects, leading to twin aperture magnet design

long term particle stability

### The "notorious" Dynamic Aperture

- Area of particle stability quantified by Dynamic Aperture (DA)
- Multipole field errors impact directly on DA but imposing lower tolerances blows-up magnet cost
- During LHC design phase, DA target was 2x higher than collimator position, due to statistical fluctuation, finite mesh, linear imperfections, short tracking time, multi-pole time dependence, ripple and a 20% safety margin
- Better knowledge of the model led to good agreement between measurements and simulations for actual LHC
- Necessity to build an accurate magnetic model (from beam based measurements)



E.H Maclean, PhD thesis, Un. of Oxford, 2014

## The "notorious Dynamic Aperture

3.0

2.5

2.0

1.5

1.0

0.5 0.0

**Correlation of DA** with lifetime (luminosity) not yet fully established (quantitatively)

Demanding simulation studies, tracking distributions with the full magnetic model and other effects (ripple, beambeam,...)



Highpower rings

# • Beam power $P = qf_r N_p E_k$

### High average beam power

Large energy swing makes fast repetition rate more difficult and vice-versa



#### Repetition rate

Increased power supply voltage, electrical power, eddy currents, cooling, cost

#### Energy

Require strong magnetic fields and increases in general the machine size, power and cost

#### Intensity

- High density beams are more sensitive to instabilities and losses (radioactivation)
- Mitigated by larger beam sizes, but impact on magnet gaps

YP et al. IPAC 2013, IPAC 2014

## Going Super-ferric

Circumference determined by energy and bending field @ extraction, and the filling factor (i.e. total bending length over circumference)

$$C \approx 3.335 \frac{2\pi\beta E}{BF_f}$$

The shortest circumference is better for power consumption, cost but also for collective effects

Filling factor for SPS and PS is ~2/3 (FODO cells) but for PS2 (Negative Momentum Compaction cells) is < 0.5</p>

- NMC cells (no transition crossing) mandatory for low-losses in a high-power machine
- Considering a 2.1T bending field (super-ferric dipole) @ 50 GeV kin. Energy the circumference can be around 1.2 km (filling factor of 0.4)

The repetition rate can remain to 1s with ramp rate of 3.5 T/s



## Intensity

- Limited by space-charge, and other collective effects, especially at injection flat bottom
- □ For keeping space-charge tune-shift < -0.25, horizontal and vertical emittance optimised accordingly, with respect to dipole and quadrupole apertures (4 $\sigma$ acceptance)  $r_0 N_p C$

 $\overline{2(2\pi)^{3/2}\sigma_z\beta\gamma^2\epsilon_{x,y}}$ 

28/11/2014

$$\Delta Q_{x,z}$$

9

## Raising the energy

- Reaching higher energy (e.g. 75 GeV for HP-PS) may be interesting for reducing intensity requirements
- For keeping the same circumference, the bending field has to be increased accordingly (to 3.1 T) but also quadrupole pole-tip field (to 1.85 T)
- Ramp rate has to be raised (to 5.5 T/s)
- Magnet aperture is accordingly reduced
- Beam dynamics constraints relaxed but magnet design becomes even more challenging

## Fringe-fields



consumption magnet design - YP

28/11/2014

## Fringe-fields



Tune footprint for the SNS based on hard-edge (red) and realistic (blue) quadrupole fringe-field

#### YP and D.T Abell, EPAC 2000

Special compact and low consumption magnet design - YP

An approach to alleviate their effect by design may be impossible

- Beam dynamics optimisation has to include the fringe-field effects
  - Ideally, need 3D field maps (initially calculated, then measured)
  - Including these maps in general beam dynamics codes for particle tracking is not straightforward
    - Symplecticity (i.e. "energy" integral preservation) is not guaranteed

### Low emittance lepton rings

Lepton Colliders (and their injectors) • Luminosity or brightness  $\mathcal{L} = \frac{N_1 N_2 f n_b}{4\pi\sigma_x\sigma_y}$ 

X-ray storage rings Photon brilliance

 $B = \frac{N_p}{4\pi^2 \bar{\epsilon_x} \bar{\epsilon_y}}$ 

- Extreme intensity within ultralow beam dimensions in an environment dominated by synchrotron radiation
- Light sources
  - Diffraction limited operation at 0.1nm requires ~10 pm
- Colliders (e.g B-factories)
  - Luminosity of 10<sup>36</sup> cm<sup>-2</sup> s<sup>-1</sup> requires a few nm as present state-of-the-art light sources
  - Low vertical emittance still a challenge for extreme currents
  - Damping rings
    - □ 500 pm H and 2 pm V (specs for ILC-DR)
    - <100 pm H and 5 pm V (specs for CLIC-DR)

### Emittances in X-ray SR, DR and e<sup>+</sup>/e<sup>-</sup> colliders



## Low emittance rings challenges



□ Ultra-low emittance achieved with highly packed lattice (TME or MBA) cells and strong focusing (as for next generation X-ray rings, see MAX)

□ Ultra low-emittance bunches with high bunch charge trigger several collective effects

- Emittance dominated by IBS (significant blow up)
- Lattice design (including magnet parameters) should be optimised taking into account this effect

Ultra-fast damping (~2ms) achieved only with high-magnetic field i.e. SC wigglers (higher energies are not an option due to emittance increase from quantum excitation)

Low vertical emittance requires extreme alignment tolerances (also for coils)

# Emittance reduction with variable bends



Reducing further the emittance by varying longitudinally bending field

- Either in step-like or hyperbolic way
- Further emittance reduction
  - By a factor between 3-6 for CLIC damping rings case
  - Allows reduction of circumference or relaxing optics constraints
- Adopted at the ESRF for SR upgrade (prototype)

To be magnetically designed for CLIC damping ring parameters (CERN-CIEMAT collaboration)

High central field, hyperbolic fall-off

 Influence to non-linear beam dynamics not yet fully established (3D map)

## Emittance reduction with Robinson wiggler



**PS Robinson wiggler** 

Reducing further the emittance by increasing damping partition number (combined alternating gradient and dipole)

□ Can these extreme gradients be achieved?



| x |             |         |         |         |  |
|---|-------------|---------|---------|---------|--|
|   | B<0         | <br>B>0 | <br>B>0 | B<0     |  |
|   | <br>dB/dx>0 | dB/dx<0 | dB/dx<0 | dB/dx>0 |  |

| No. 4 | Туре       | B(T) | g (mm) | dB/dx (T/m) |
|-------|------------|------|--------|-------------|
|       | Out-vacuum | 1.4  | 11     | 140         |
| s     | In-vacuum  | 1.0  | 5.5    | 182         |

### Wiggler parameter choice



The highest field and smallest period provide the smallest emittance

Lower emittance blow-up due to IBS for high-field but moderate period (within CLIC emittance targets)

□ Wiggler prototype in NbTi with these specs, built at BINP, for installation to ANKA (KIT)

Serving X-ray user community but also beam tests

Development of higher-field short models in Nb3Sn at CERN

D. Schoerling et al., PRST-AB 15, 042401, 2012

## Ring Higgs factories

- Rings of very large circumference (>50km) for moderate energy (<200GeV)</p>
- □ Filled with low field magnets in the arcs (and a lot of RF!) in a high synchrotron radiation environment
- High-field final focus magnets (field quality), very close to the detector (integration)
- □ Ultra-low vertical emittance (~1pm), requires challenging alignment and corrections in a large circumference
- □ Very short lifetime due to radiative Bhabha and Beamstrahlung (minutes) requires top-up, i.e. booster ring (at ~0.1Hz) with same circumference



28/11/2014

### Booster Ring (FCC-ee) parameters

| Top Energy [GeV]                        | 45.5                      | 80    | 120   | 175   |  |  |  |
|-----------------------------------------|---------------------------|-------|-------|-------|--|--|--|
| Cycle time [s]                          | 12                        |       |       |       |  |  |  |
| Circumference [m]                       | 100000                    |       |       |       |  |  |  |
| Bending radius [m]                      | 11000                     |       |       |       |  |  |  |
| Injection energy [GeV]                  | 20                        |       |       |       |  |  |  |
| Dipole length                           | 10.5                      |       |       |       |  |  |  |
| Emittance @ injection [nm]              | 2.81                      | 0.10  | 0.01  | 0.01  |  |  |  |
| Emittance @ extraction [nm]             | 14.5                      | 1.65  | 1.0   | 1.0   |  |  |  |
| Bending field @ injection [G]           | ing field @ injection [G] |       |       | 61    |  |  |  |
| Bending field @ extraction [G]          | 138                       | 243   | 361   | 531   |  |  |  |
| Energy Loss / turn @ injection [MeV]    | 1.287                     |       |       |       |  |  |  |
|                                         |                           |       | 1667. | 7542. |  |  |  |
| Energy Loss / turn @ extraction [MeV]   | 34.5                      | 329.4 | 6     | 6     |  |  |  |
| Long. Damping time @ injection [turns]  | 15543                     |       |       |       |  |  |  |
| Long. Damping time @ extraction [turns] | 1320                      | 243   | 72    | 23    |  |  |  |
| Average current [mA]                    | 36.1                      | 3.8   | 0.8   | 0.1   |  |  |  |
| Average power @ injection [kW]          | 46.4                      | 4.9   | 1.0   | 0.2   |  |  |  |
| Average power @ extraction [MW]         | 1.24                      | 1.26  | 1.27  | 0.88  |  |  |  |
| Average power over 1 cycle [kW]         |                           | 105   | 106   | 105   |  |  |  |
| Critical energy [MeV]                   | 0.02                      | 0.10  | 0.35  | 1.08  |  |  |  |
| Radiation angle [µrad]                  | 11.2                      | 6.4   | 4.3   | 2.9   |  |  |  |

Bending field at injection of around 60G

> ❑ Has to remain low as energy loss/turn at flat top is quite high

□ Compensation of eddy currents, hysteresis effects (12s cycle) and appropriate shielding from main magnets is needed

Critical energies @ extraction up to 1.1MeV

> Needs demanding shielding, absorption scheme and vacuum chamber design

## Summary

Future accelerators have a great number of challenges impacting magnetic design

High-field (but also very low), field quality, fast ramping, packed magnets, fringe fields, exotic field profiles,...

Magnet builders and beam physicists have to work hand-in-hand for facing them

Achieve the highest performance at the lowest cost/power

Special compact and low consumption magnet design - YP



## References

- E.H Maclean, PhD thesis, Un. of Oxford, 2014
- □ Y. Papaphilippou et al., IPAC 2014, THPME068, p. 3391
- □ Y. Papaphilippou and D.T. Abell, EPAC 2000, p.1453
- R. Bartolini, Low Emittance Rings workshop, 2013, Oxford
- □ Y. Papaphilippou et al., IPAC 2012, TUPPC086, p. 1368
- M. Eriksson et al., THPC058, IPAC 2011, p. 3026
- L. Farvacque et al., MOPEA008, IPAC2013, p. 79
- **F.** Antoniou, PhD thesis, NTUA, 2013
- G. Le Bec, et al, IPAC 2014, TUPRO082, p. 1232
- H. Abualrob et al., IPAC 2012, MOPPP062, p. 702
- D. Schoerling et al., PRSTAB 15, 042401, 2012
- □ A. Blondel and F. Zimmermann, CERN-OPEN-2011-047