

Why are particle accelerators so inefficient?

Philippe Lebrun CERN, Geneva, Switzerland

Workshop on Compact and Low-Consumption Magnet Design for Future Linear and Circular Colliders CERN, 9-12 October 2014

Why bother about efficiency? M. van der Hoeven, *Energy efficiency report 2013*, IEA

Ph. Lebrun

EUCARD²

The largest energy resource M. van der Hoeven, *Energy efficiency report 2013*, IEA

 Cumulative avoided energy consumption due to energy efficiency in these IEA countries amounted to over 1 350 EJ (32 billion toe)

Long-term improvements in energy efficiency in 11 IEA countries

OECD/IEA 2013

EUCARD²

FR

Electricity price projections **European Commission, Directorate-General for Energy** EU energy trends to 2030, Reference Scenario 2010

Workshop on Magnet Design Nov 2014

A two-step approach

- Understand relations between
 - Performance parameters
 - Particle energy E
 - Luminosity *L*
 - Beam parameters
 - Beam power *P*_{beam}
 - Beam stored energy *W*_{beam}

- Analyse sources of losses
 - "Intrinsic" losses
 - Synchrotron radiation
 - Beam image currents
 - Electron cloud
 - Accelerator systems
 - RF
 - Magnets
 - Vacuum
 - Beam instrumentation
 - ...
 - Infrastructure
 - Electrical distribution
 - Cooling & ventilation
 - Cryogenics
 - ...

A two-step approach [1/2]

- Understand relations between
 - Performance parameters
 - Particle energy E
 - Luminosity *L*
 - Beam parameters
 - Beam power *P*_{beam}
 - Beam stored energy *W*_{beam}

- Analyse sources of losses
 - "Intrinsic" losses
 - Synchrotron radiation
 - Beam image currents
 - Electron cloud
 - Accelerator systems
 - RF
 - Magnets
 - Vacuum
 - Beam instrumentation
 - ...
 - Infrastructure
 - Electrical distribution
 - Cooling & ventilation
 - Cryogenics
 - ...

Beam power, particle energy, intensity Linear accelerators

• Average beam power

- Example: ESS proton linac
 - E = 2 GeV
 - I = 62.5 mA
 - $-\delta = 4\%$
 - $P_{beam} = 5 \text{ MW}$ average

Beam power, particle energy, luminosity Linear colliders

- Lower-energy regime (small beamstrahlung) $\mathcal{L} \sim \frac{1}{\sqrt{\beta_y \varepsilon_y}} \xrightarrow{P_{beam}} \xrightarrow{P_{beam}} \xrightarrow{P_{article energy}} \xrightarrow{P_{article en$
- Example: CLIC

Centre-of-mass energy	Luminosity	Electrical	Main Beam power	Overall
$E_{\rm CM}$	$\mathscr{L}_{1\%}$	power P	(2 deams) P_{MB}	$\eta = P_{\rm MB}/P$
[TeV]	$[cm^{-2}s^{-1}]$	[MW]	[MW]	[%]
0.5	$1.40 imes 10^{34}$	271	9.4	3.5
1.5	$1.45 imes 10^{34}$	361	14	3.9
3	2.00×10^{34}	582	28	4.8

Beam power, particle energy, intensity Circular accelerators

• Beam energy

• Average beam power

- Example: SPS (design)
 - E = 400 GeV
 - $N_{pulse} = 10^{13}$
 - $T_{cycle} = 5.8 \text{ s}$
 - $W_{beam} = 640 \text{ kJ}$
 - $P_{beam} = 110 \text{ kW}$

Stored energy, particle energy, luminosity Circular colliders [1/2]

• For round beams with crossing angle

• Noting that
$$W_{beam} = m_0 c^2 \gamma N_b n_b = E N_b n_b$$

• Then

$$\mathcal{L} = \frac{1}{4\pi m_0 c^2} f_{rev} \frac{N_b}{\varepsilon_n} \frac{F}{\beta^*} W_{beam} = \frac{\gamma}{4\pi} f_{rev} \frac{N_b}{\varepsilon_n} \frac{F}{\beta^*} \frac{W_{beam}}{E}$$
Circumference
Circumference
Liniector chain

EUCA

Introducing "average" beam power, i.e. beam stored energy divided by beam lifetime

$$P_{avg \ beam} = \frac{W_{beam}}{\tau_{beam}} \sim \frac{E\mathcal{L}}{\tau_{beam}}$$

- Example: LHC nominal
 - E = 7 TeV
 - *I* = 0.58 A
 - $\mathcal{L} = 1.0E34 \text{ cm}^{-2} \text{ s}^{-1}$
 - $W_{beam} = 362 \text{ MJ}$
 - taking $\tau_{beam} \approx 10$ h,
 - then $P_{avg \ beam} \approx 10 \ \text{kW}$
 - i.e. about 20 kW for two beams

- For all types of colliders , the average beam power is proportional to the product of particle energy and luminosity
- We can then define a "collider coefficient of performance" (CoCOP) as the product of collision energy and luminosity

$$CoCOP = 2 E \mathcal{L}$$
 [E34 TeV. cm⁻². s⁻¹]

- The CoCOP can then be compared to the beam power for different machines, and the ratio *CoCOP/P_{beam}* [E34 TeV.cm⁻².s⁻¹/MW] used to quantify the relation between beam power and collider performance
- <u>Notes</u>
 - The CoCOP has the dimension of an inverse cross-section
 - The CoCOP may be seen as an attempt to quantify the "physics reach" of the collider. However, it gives the same weight to energy and luminosity, which are both important but not equivalent. A "physics coefficient of performance" (PhyCOP) could be defined by a Cobb-Douglas function

 $PhyCOP = 2 E \mathcal{L}^n$ with n < 1

Collider COP

	LHC	HL-LHC	CLIC 500	ILC 500	CLIC 3000
Collision energy [TeV]	14	14	0.5	0.5	3
Luminosity [E34 cm-2.s-1]	1	5	2.3	1.8	5.9
Collider COP [E34 TeV.cm-2.s-1]	14	70	1.15	0.9	17.7
Beam power (2 beams) [MW]	0.02	0.045	9.8	10.5	28
Collider COP/beam power	700	1556	0.12	0.09	0.63

Collider COP/beam power Note logarithmic scale

A two-step approach [2/2]

- Understand relations between
 - Performance parameters
 - Particle energy E
 - Luminosity *L*
 - Beam parameters
 - Beam power *P*_{beam}
 - Beam stored energy W_{beam}

- Analyse sources of losses
 - "Intrinsic" losses
 - Synchrotron radiation
 - Beam image currents
 - Electron cloud
 - Accelerator systems
 - RF
 - Magnets
 - Vacuum
 - Beam instrumentation
 - ...
 - Infrastructure
 - Electrical distribution
 - Cooling & ventilation
 - Cryogenics
 - ...

Radio Frequency

Example of analysis CLIC power consumption by technical system

Other

3 TeV

Magnets

500 GeV A Total 272 MW

Magnets

CV: cooling & ventilation, NW: electrical network losses, BIC: beam instrumentation & control

	LHC*	HL-LHC*	CLIC 500	ILC 500	CLIC 3000
Beams [MW]	0.02	0.045	9.8	10.5	28
Intrinsic [MW]	0.025	0.036			
Accelerator systems** [MW]	14.8	14.8	185	96	446
Accelerator efficiency [%]	0.14	0.30	5.30	10.94	6.28
Infrastructure***[MW]	72.4	85.5	71	68	121
Total grid power [MW]	87	101	261	175	573
Grid-to-beam efficiency [%]	0.02	0.04	3.75	6.00	4.88
* excluding injectors					
** including beam power					
*** including cryogenics					

Collider efficiencies Note logarithmic scale

Sankey diagrams are useful tools CLIC power flow

Power flow for the main RF system of CLIC at 3 TeV

Overall power flow for CLIC at 3 TeV

Accelerator systems: magnets Power consumption

- Normal conducting (copper)
 - Power dissipation per unit length
 - Total power dissipation

 $P/L \sim \rho_{Cu} jB$

 $P \sim \rho_{Cu} \, jBR \sim \rho_{Cu} \, jE_{beam}$

- -> power dissipation can be reduced by choosing a low current density
- Superconducting
 - Total power (refrigeration)

 $P \sim L \sim R$

-> independent of magnetic field

	Normal conducting	Superconducting (LHC)
Magnetic field	1.8 T (limited by iron saturation)	8.3 T (limited by critical surface of Nb-Ti)
Field geometry	Defined by pole pieces	Defined by windings
Current density in windings	10 A/mm ²	400 A/mm ²
Electromagnetic forcess	20 kN/m	3400 kN/m
Electrical power from grid	10 kW/m	2 kW/m

Magnet systems for circular accelerators Specific power consumption

Superconductivity and higher fields break the canonical ~ 250 kW/GeV specific power consumption of conventional synchrotron magnets

Accelerator systems: RF Development of high-efficiency modulators

 $\rho_{\text{power}} = P_{\text{out}}/P_{\text{in}}$

$$ho_{modulator} =
ho_{power} *
ho_{pulse}$$

Useful flat-top Energy	22MW*140µs = 3.08kJ
Rise/fall time energy	22MW*5µs*2/3= 0.07kJ
Set-up time energy	22MW*5µs = 0.09kJ
Pulse efficiency	0.95
Pulse forming system efficiency	0.98
Charger efficiency	0.96
Power efficiency	0.94
Overall Modulator efficiency	89%

D. Nisbet & D. Aguglia

Accelerator systems: RF "Smart" RF loads

- RF-to-DC power conversion
 F.Caspers, M. Betz, A. Grudiev & H.
 Sapotta, Design concepts for RF-DC conversion in particle accelerator systems, IPAC10
- High-temperature heat recovery
 S. Federmann, M. Betz, F.Caspers, *RF* loads for energy recovery, IPAC12

Infrastructure systems: cryogenics COP of cryogenic helium refrigerators (installed)

EUCARD²

Cryogenic refrigeration Efficiency degrades at reduced capacity

Infrastructure systems: cooling & ventilation Efficiency of heat transport in water vs. air

- Heat to be extracted
- Mechanical power on coolant
- Specific power

$$W/Q = \frac{\Delta P}{\varepsilon \rho C \Delta T}$$

 $Q = \dot{m} C \Delta T$

 $W = \frac{\dot{m}\,\Delta P}{\varepsilon\,\rho}$

EUCARD²

with ε = circulator efficiency

- For all types of machines, the average beam power is proportional to the product of particle energy and luminosity or delivered particle flux
- The energy-luminosity performance, and possibly the physics reach of a collider can be represented by a single "coefficient of performance"
- The ratio of "coefficient of performance" to beam power quantifies the relation between collider performance and beam parameters: it is lower for single-pass machines than for circular colliders
- "Intrinsic" losses due to basic physics processes add up to the beam power and often exceed it (synchrotron radiation)
- Accelerator systems and infrastructure represent the bulk of electrical power consumption
- Comparing total power consumption and average beam power yields very low values for overall "grid-to-beam" efficiency
- Linear colliders show higher overall "grid-to beam" efficiencies than circular colliders. This partly compensates for their much lower COP/beam power ratio

Outlook Strategies for better efficiency

- Maximize energy-luminosity performance per unit of beam power
 - Minimize circumference for a given energy (high-field magnets)
 - Operate at beam-beam limit
 - Low-emittance, high-brilliance beams
 - Low-beta insertions, small crossing angle ("crabbing")
 - Short bunches (beamstrahlung)
- Contain "intrinsic" losses
 - Synchrotron radiation
 - Beam image currents
 - Electron-cloud
- Optimize accelerator systems
 - RF power generation and acceleration (deceleration)
 - Low-dissipation magnets (low current density, pulsed, superconducting, permanent)
- Optimize infrastructure systems
 - Efficient cryogenics (heat loads, refrigeration cycles & machinery, distribution)
 - Limit electrical distribution losses (cables, transformers)
 - Absorb heat loads preferably in water rather than air
 - Recover and valorise waste heat

Ph. Lebrun

Workshop on Magnet Design Nov 2014

www.cern.ch