

Development and Operation of a superconducting combined-function magnet system for J-PARC neutrino beam line

Toru Ogitsu¹, Yasuhiro Makida¹, Tatsushi Nakamoto¹, Ken-ichi Sasaki¹, Osamu Araoka¹, Yoshiaki Fujii¹, Masahisa Iida¹, Takanobu Ishii¹, Ruri Iwasaki¹, Nobuhiro Kimura¹, Takashi Kobayashi¹, Takeshi Nakadaira¹, Kazuo Nakayoshi¹, Hirokatsu Ohhata¹, Takahiro Okamura¹, Ryutaro Okada¹, Ken Sakashita¹, Masahiro Shibata¹, Michinaka Sugano¹, Akira Yamamoto¹, Makoto Yoshida¹, KEK

Michael Anerella², John Escallier², George Ganetis², Arup Ghosh², Ramesh Gupta², Joe Muratore², Brett Parker², Peter Wanderer², BNL

Jean-Paul Charrier³, Thierry Boussuge³, CEA Saclay

Hidekazu Kakuno⁴ Tokyo Metropolitan Univ.

Index

- System Overview and Development
- Operation Statistics (Jan. 2010~ June 2012)
 - Beam induced quench (Nov. 2010)
- The earthquake (Mar.11 2011)
 - damages and recovery (Mar.~ Dec. 2011)
- Corrector Improvement (2011 Summer)
- Cold Diode Bus Consolidation (2014 Summer)
- Radioactive Material Control
- Summary

System Overview and Development

Linac

3GeV

Synchrotro

Neutrino Facility

Main Ring

Materials and Life Science Experimental Facility

Nuclear and Particle Experimental Facility (Hadron Hall)

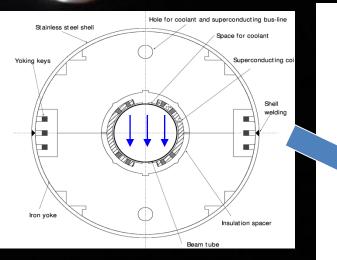
System Overview J-PARC Neutrino Beam Line

Linac

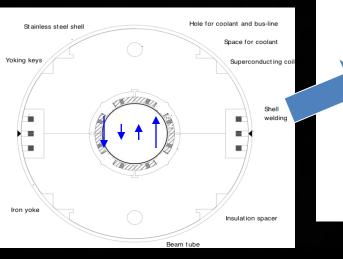
3GeV

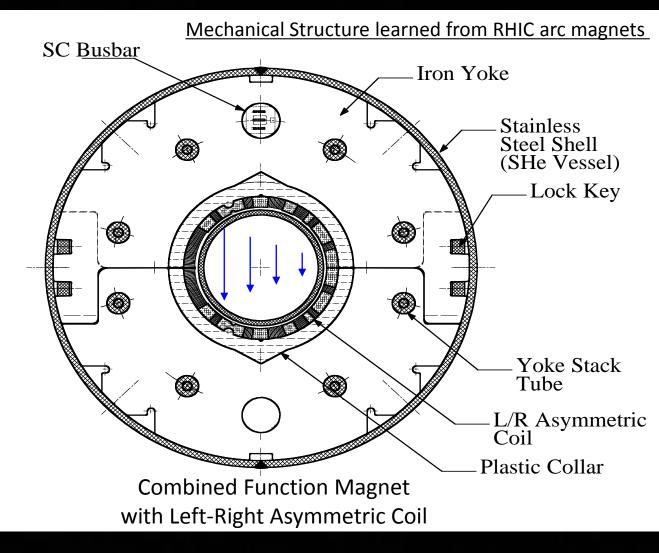
Synchrotro

Neutrino Facility

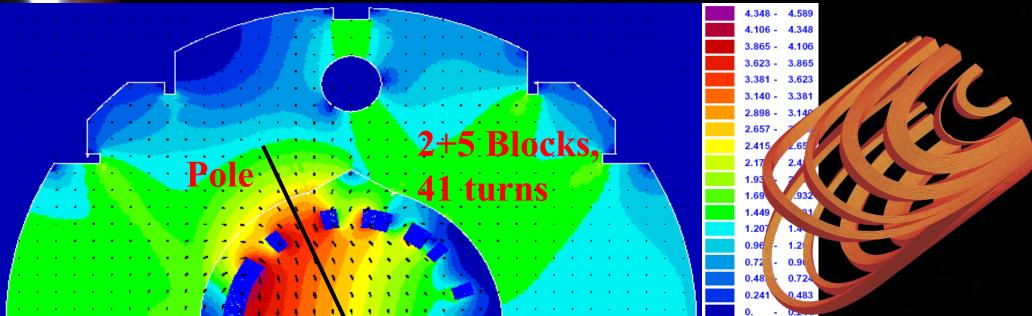

Main Ring

Materials and Life Science Experimental Facility


Nuclear and Particle Experimental Facility (Hadron Hall)


SC Combined Function Magnet

RHIC like Dipole


RHIC like Quadrupole

Designed for 50 GeV; Dipole: 2.6 T, Quadrupole: 19 T/m Operation current: 7345 A > Currently 30 GeV: ~4350A

Specification

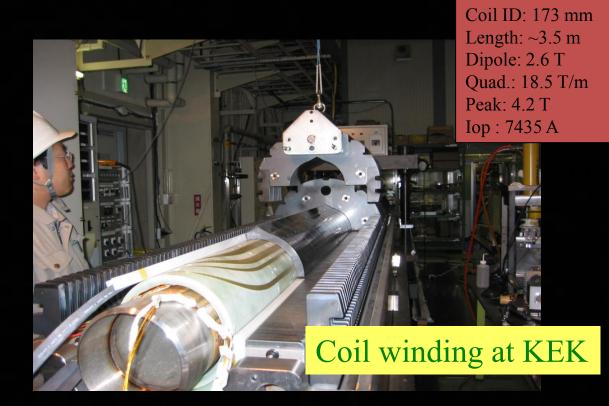
Coil ID.:	173.4mm				
Mag. Length:	3300 mm				
Mech. Length:	3630 mm				
Tmax: < 5.	.0K				
(Supercritical Helium Cooling)					
Dipole Field: 2.59	ЭТ				
Quad. Field: 18.6	5 T/m				
Field Error: < 10	^-3 @ 50mm				

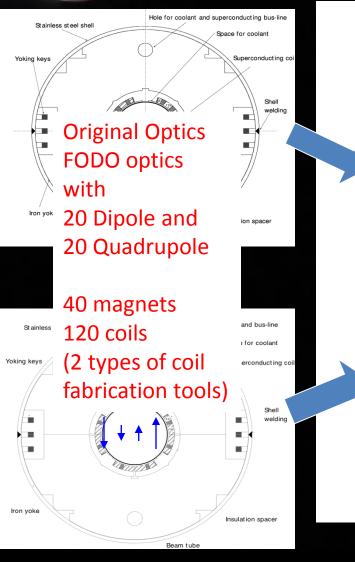
Α
14.3 mH
386 kJ
28
NbTi/Cu
Type Cable
ole Outer-L

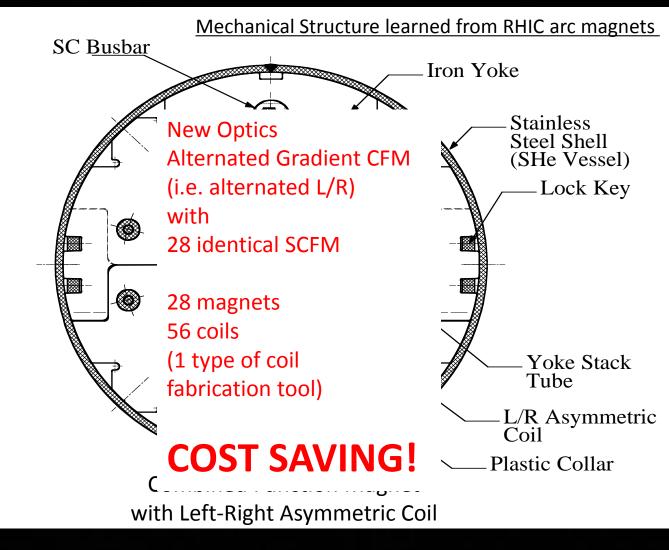
	3D-SS	3D-LE	3D-RE	3D-Integral
Lmag (m)	1.94	0.78	0.58	3.3
B1 (T)	2.591	2.602	2.603	2.601
b2 (unit)	3628	3567	3517	3581
b3 (unit)	-0.93	-58.1	-101.5	-33.7
b4 (unit)	5.01	-11.1	-23.5	-2.3
b5 (unit)	2.07	-8.9	-16.0	-3.5
b6 (unit)	-6.36	-7.9	-9.8	-7.2
b7 (unit)	-1.16	-3.5	-5.3	-2.4
b8 (unit)	-3.95	-2.9	-3.6	-3.7
b9 (unit)	-8.86	-7.7	-7.9	-8.4
b10 (unit)	-0.25	0.3	0.3	-0.0
b11 (unit)	-3.10	-2.7	-2.6	-2.9
b12 (unit)	2.07	1.7	1.6	1.9

• <u>Peak field at conductor in straight section is 4.6 T at 50 GeV.</u>

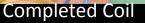
- Load line ratios at 5 K for 40 & 50 GeV are 58 % <u>& 72 %</u>, respectively.
- Field quality within a tolerance of <u>10-3</u> is acceptable.

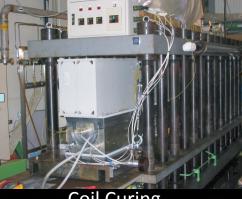

Good Not So Good Enough


Combined function Magnet Coil Winding, Thanks for experience from LHC-MQXA development

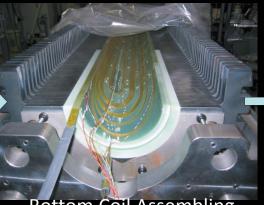


SC Combined Function Magnet


Designed for 50 GeV; Dipole: 2.6 T, Quadrupole: 19 T/m Operation current: 7345 A > Currently 30 GeV: ~4350A


RHIC like Quadrupole

Prototype Fabrication 1


Coil Curing

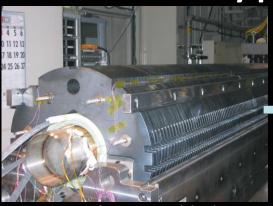
Coil Winding

Bottom Yoke and Collar

Bottom Coil Assembling

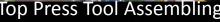
Beam Tube Assembling

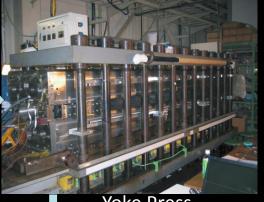
Top Collar Assembling



Top Coil Assembling

a


Prototype Fabrication 2



Top Yoke Assembled

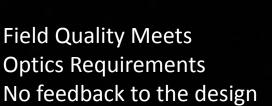
Yoke Press

Yoked Coil

Side Key Insert

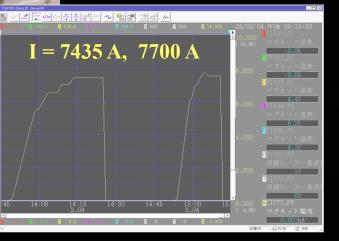
Side Key Insert

End Splice Assembling


Prototype Completion and Testing

Prototype Completed by Jan. 2005 Cold test in vertical Cryostat in March 2005 $I_{op} = 7345 A @ 50 GeV (and <math>I_{max} = 7,700 A)$

reached with no quench, on March 4, 2005 Installation into cryostat



Record of Excitation current

	Measurement	Computation
Current (A)	7460	7345
$B_1(T \bullet m)$	8.906	8.712
$B_2 (T \bullet m)$	3.127	3.120
B ₃ (T•m)	-220.6*10 ⁻⁴	-293.6*10 ⁻⁴
$B_4 (T \bullet m)$	-5.9*10 ⁻⁴	-20.1*10 ⁻⁴
B ₅ (T•m)	-51.9*10 ⁻⁴	-30.6*10 ⁻⁴
$B_6 (T \bullet m)$	-75.2*10 ⁻⁴	-62.8 *10 ⁻⁴
B ₇ (T•m)	-44.6*10 ⁻⁴	- 20.9*10 ⁻⁴
$B_8 (T \bullet m)$	-74.5*10 ⁻⁴	-32.0*10 ⁻⁴
B ₉ (T•m)	-79.9*10 ⁻⁴	-73.4*10 ⁻⁴
B_{10} (T•m)	-13.8*10 ⁻⁴	-0.3*10 ⁻⁴

Field Measurement Result

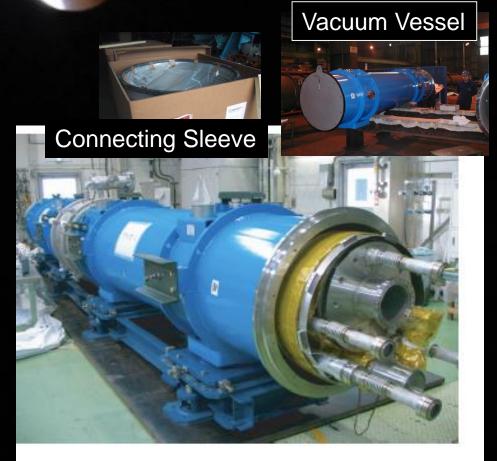
Production Magnets Field Quality

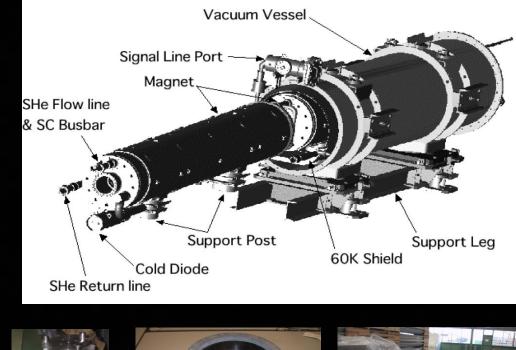
Integral Field Quality

Mass Production Started Jan. 2006 All tested in vertical cryo.

Field Measurements -Meets optics requirements -Reproducibility: similar to MQXA

		Opera 3D			Measured					
Bn Unit		7345 A	5830 A	4400 A	7345A		58.	30 A	4400 A	
		calculated	calculated	calculated	average	standard deviation	average	standard deviation	average	standard deviation
1	Tm	-8.69	-6.93	-5.20	-8.72	0.023	-6.94	0.020	-5.23	0.016
2	Tm	3.11	2.49	1.87	3.07	0.002	2.46	0.002	1.86	0.002
3	1×10 ⁻⁴ Tm	293.45	236.56	179.18	218.99	6.50	181.74	5.38	138.44	3.81
4	1×10 ⁻⁴ Tm	-20.33	-64.83	-52.10	-7.55	4.55	-62.67	3.82	-53.71	2.74
5	1×10 ⁻⁴ Tm	30.68	41.02	32.12	47.77	3.31	53.79	2.45	40.52	1.74
6	1×10 ⁻⁴ Tm	-62.58	-48.25	-36.07	-68.18	1.90	-50.72	1.31	-36.65	0.92
7	1×10 ⁻⁴ Tm	20.84	14.77	10.93	33.02	3.80	21.12	2.65	13.50	1.87
8	1×10 ⁻⁴ Tm	-31.87	-25.13	-18.84	-59.11	5.14	-42.90	4.02	-29.19	3.22
9	1×10 ⁻⁴ Tm	73.20	58.17	43.64	75.50	1.67	59.65	1.17	44.55	0.99
10	1×10 ⁻⁴ Tm	-0.33	-0.29	-0.22	-10.57	1.41	-7.40	1.12	-4.69	1.01


Straight Section Field Quality

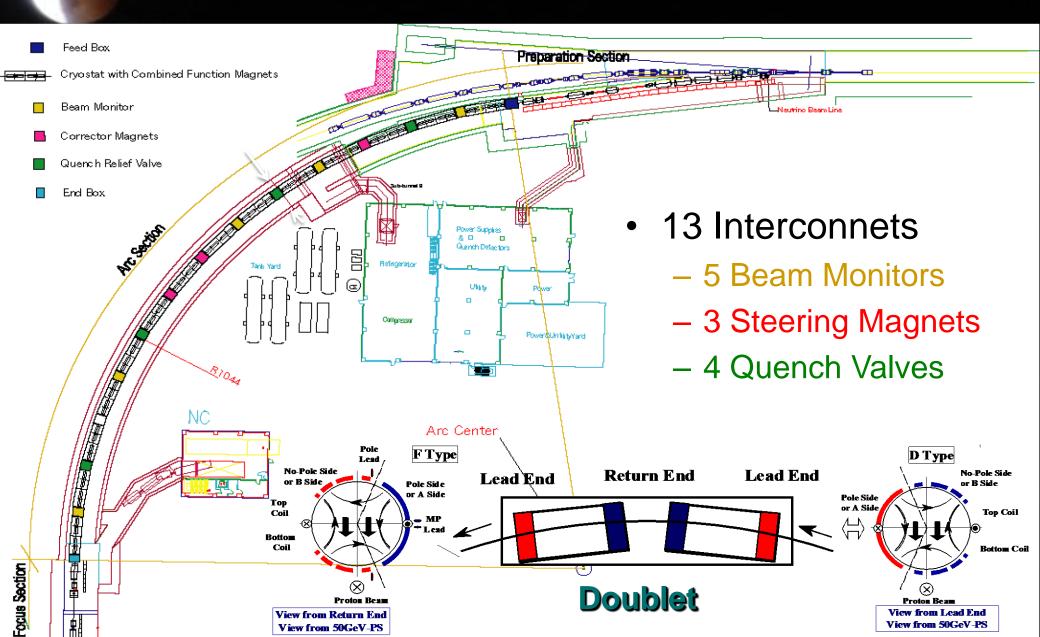

MQXA Straight Section

		Opera 2D				Mea	sured				rence radius conv	verted to the same ratio
Γ		2020.4		734	45A	583	30 A	440	00 A		Mea	sured
	7345 A	5830 A	4400 A	average	standard deviation	average	standard deviation	average	standard deviation		average	standard deviation
b3	1.62	1.91	1.21	5.12	0.84	3.86	0.78	3.48	0.76	b3	0.063	0.41
b4	-9.04	0.26	2.30	-9.19	0.42	-0.64	0.43	-0.77	0.41	b4	1.94	0.16
b5	2.51	-0.93	-1.47	0.50	0.31	-1.89	0.29	-1.90	0.28	b5	0.00	0.07
b6	6.28	5.98	5.82	6.72	0.15	6.22	0.12	5.94	0.11	b6	0.67	0.17
a3	0	0	0	0.12	1.05	0.22	1.05	0.24	1.07	a3	0.27	0.47
a4	0	0	0	-0.11	0.19	-0.04	0.21	-0.02	0.20	a4	-0.02	0.40
a5	0	0	0	0.08	0.36	0.07	0.34	0.06	0.31	a5	0.01	0.07
a6	0	0	0	0.04	0.17	0.06	0.13	0.07	0.10	a 6	-0.05	0.04

Doublet Cryostat

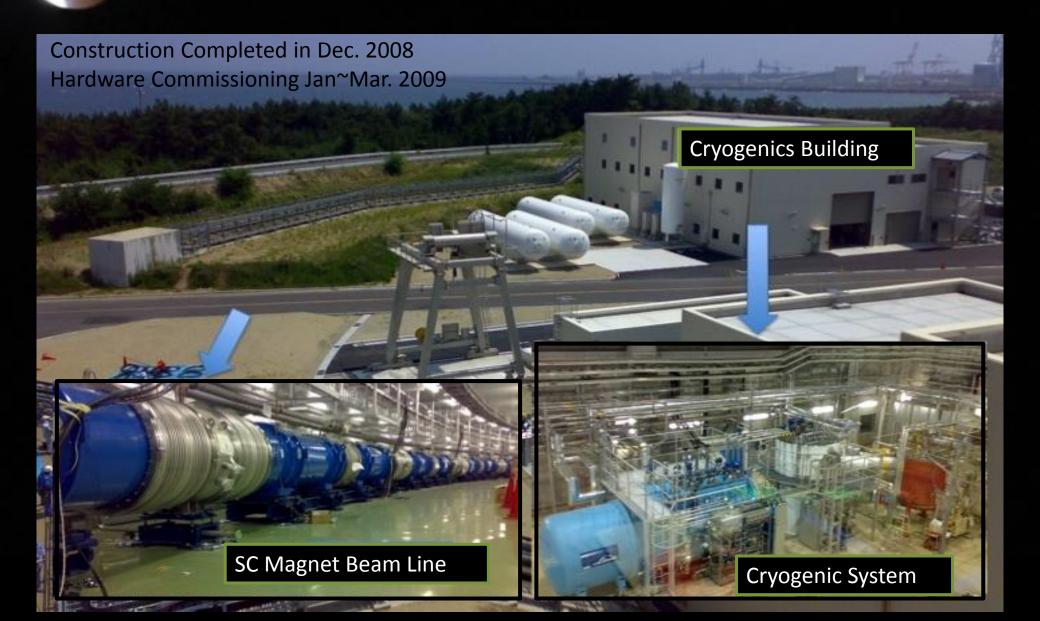
Cold Diode

Support Post

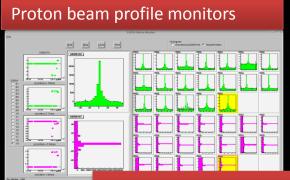

Support Post

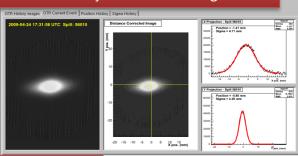
- Cryostat Design
 - Common baseline: LHC cryostat: Reduce Cost and Risk
 - Common Parts

 advantage of LHC mass production (also Strong CERN support)

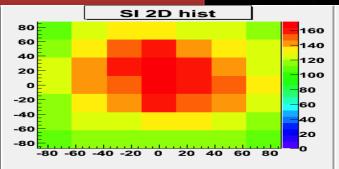

Beam Line Configuration

J-PARC


J-PARC Neutrino Beam Line

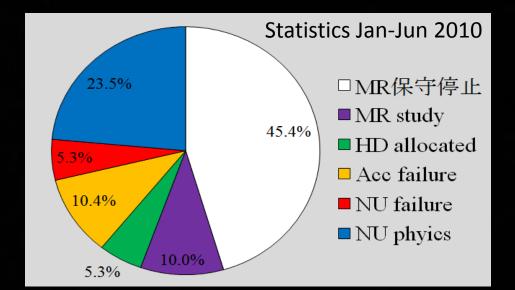


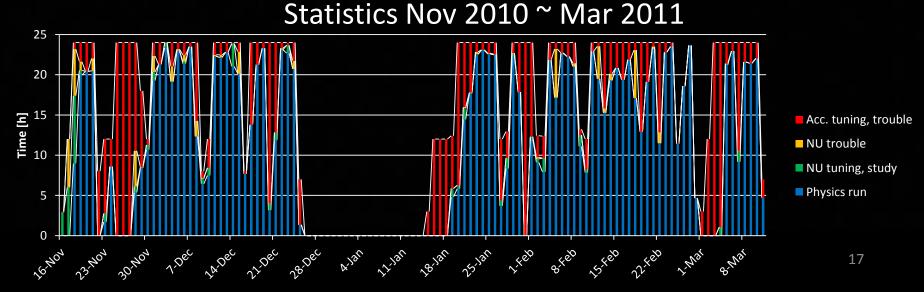
Operation Statistics



OTR detector just in front of target

Muon monitor profile



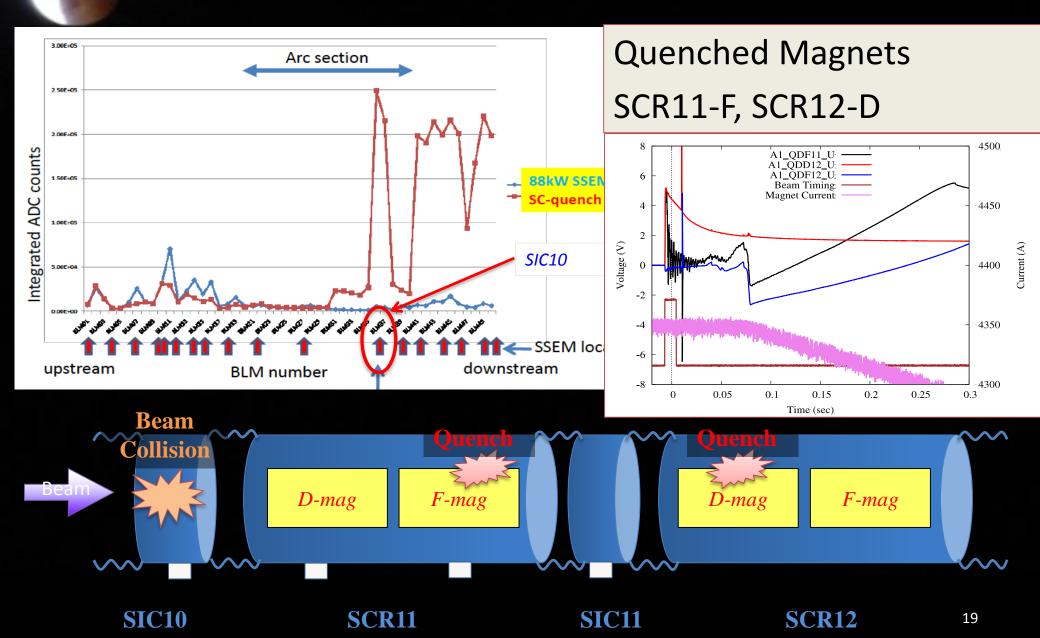


First beam in Apr. 2009 Beam commissioning in 2009 Physics Run starts Jan. 2010

Statistics until the earthquake

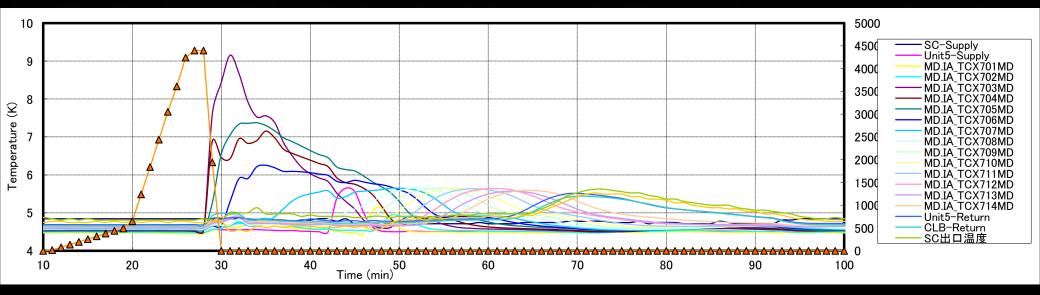
- Allocated Time:2430hr
- NU trouble: 107hr (4.4%)
- SC trouble
 - 4 troubles
 - Beam Induced Quench: 1
 - Interlock: 3
 - Total time: 14hr (0.6%)

Beam Induced Quench



- Nov. 28 2010
- Beam hits beam profile monitor frame

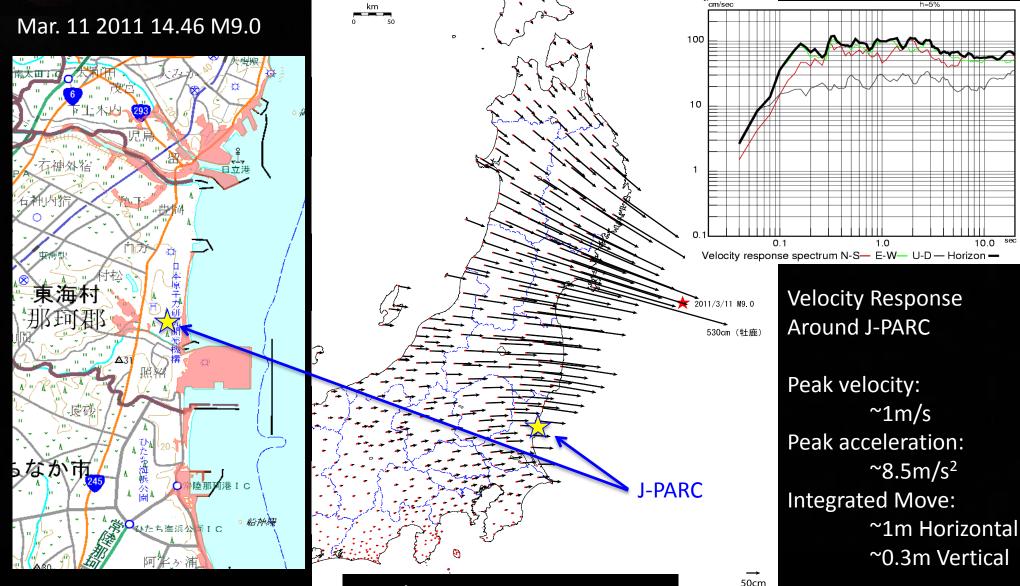
Beam Loss and Quench


PARC

Recovery from the quench

- Cooling time ~100 min
- No problem for magnet re-excitation
- Beam operation resumed by about 2 hours

The Great East Japan Earthquake


Damages and Recovery

J-PARC LINAC

Great East Japan Earthquake

Tsunami invasion map

GPS datum points movement

LINAC

Impact on J-PARC

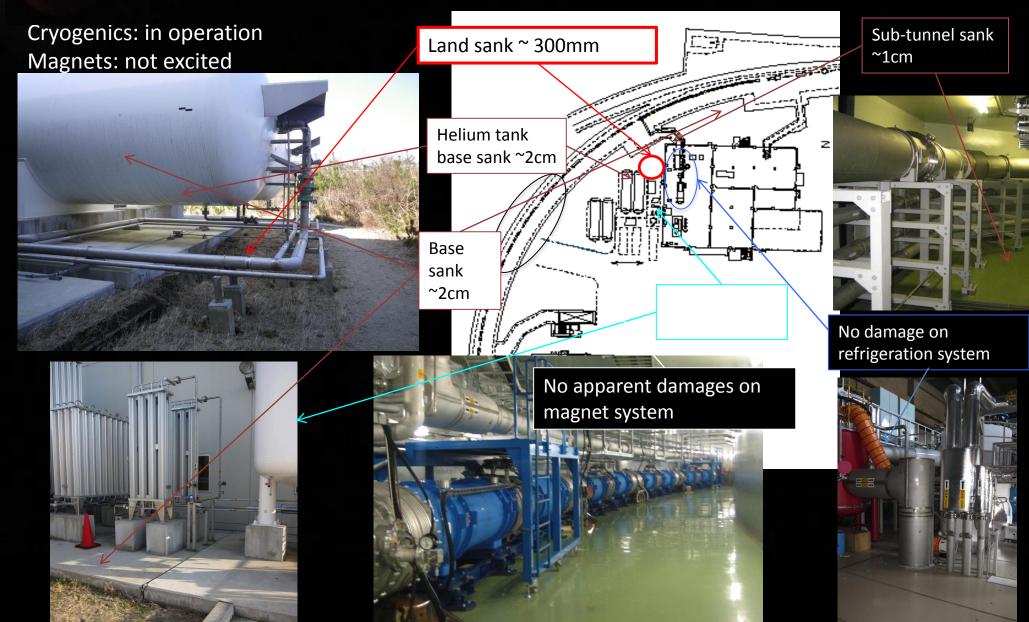
LINAC

River near J-PARC

No Tsunami invasion into J-PARC

3GeV RCS

Main Ring



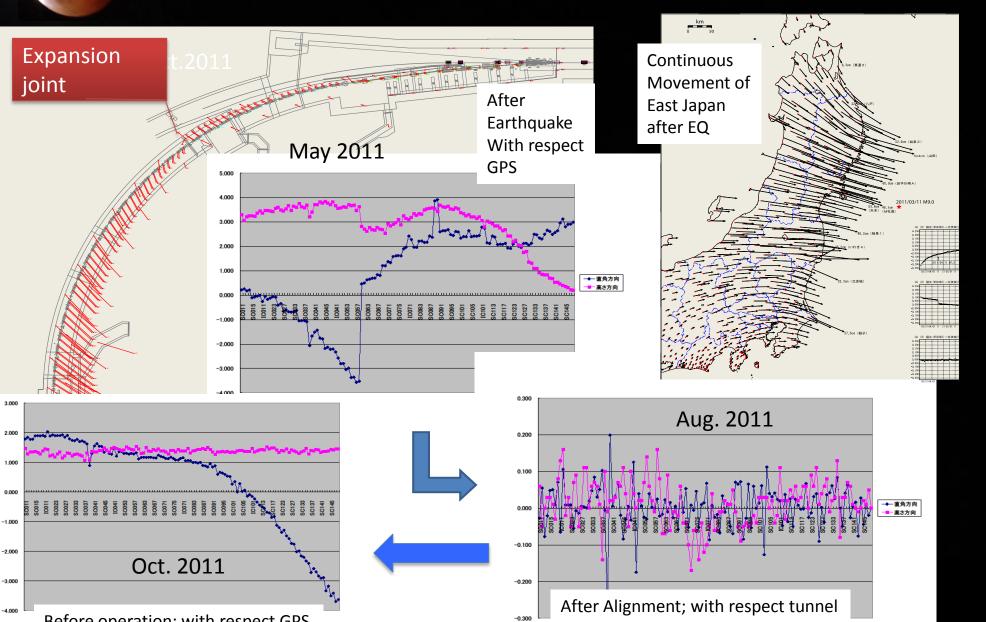
Neutrino Dump

Damages on Neutrino Beam Line Cryogenics

Recovery Procedure

Date	Event	Description
11 Mar	Earthquake	Minimum safety check
13 Mar	Safety Op.	Pressure equalization
17 Mar	Tunnel Check	With handy light and O ₂ monitor
24 Mar	Low V Recov.	Lights in the tunnel
29 Mar	Water Recov.	
1 Apr.	High V Recov.	High voltage electricity
4 Apr.	Aircon. Recov.	In tunnel
11 Apr.	Refrig. Exam.	Cold box interior
15 Apr.	Mag. Exm.	Mag. Cryo. interior
19 Apr.	Comp. Exam.	Refrig. Main compressor
23 May ~1Jun.	System test	Cooldown and excitation

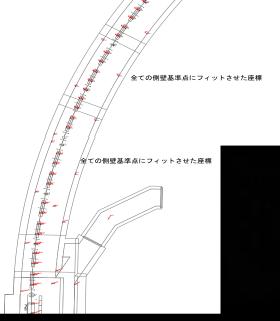
Cold Box Interior



Cryo. Interior

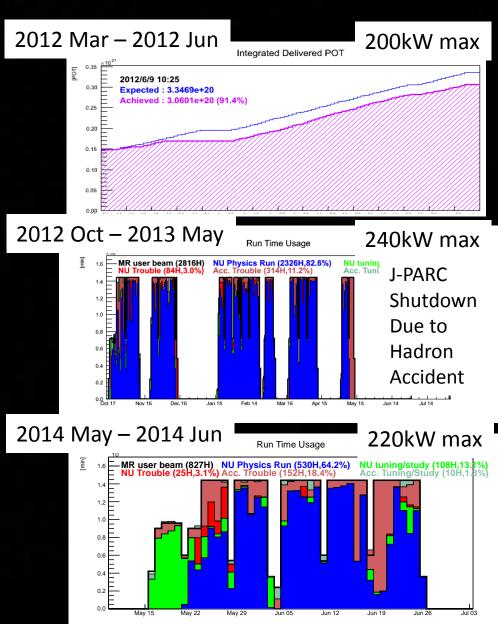
System health confirmed


Displacement and Re-Alignment of Neutrino Beam Line Magnets



Alignment Status

全ての側壁基準点にフィットさせた座標


Beam Line Movement May~Oct 2011: 5 mm max Oct 2011~ Present: 1 mm max Beam Operation Only with adjustment of SCFM current No corrector operation so far

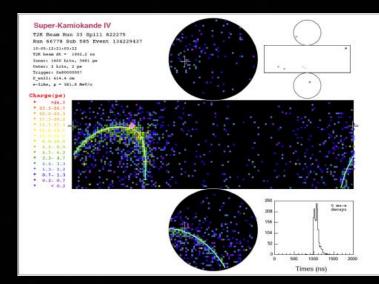
Statistics after the earthquake

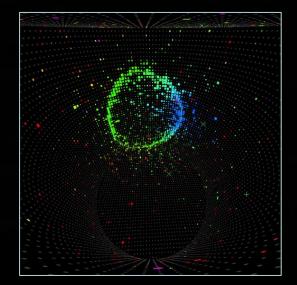
2012 March-June Nu trouble 4.2% (77 h) *Excluding major trouble by the horn SC trouble 3.5% (46 h)

Mostly false trigger by interlock system >trouble on the logic boards: Fixed summer 2012

> <u>No beam stop due to</u> <u>SC trouble</u> <u>after summer 2012</u>

Achievements


J-PARC


15th June 2011 Indication of Electron Neutrino Appearance

From data collected before March 11, 2011 http://legacy.kek.jp/intra-e/press/2011/J-PARC_T2Kneutrino.html http://www.j-parc.jp/hypermail/news-I.2011/0005.html

19th July 2013 **Discovery of Electron Neutrino Appearance** From data collected before May 23, 2013 http://legacy.kek.ip/intra-e/press/2013/071921/

http://www.j-parc.jp/hypermail/news-l.2013/0004.html

Summary

- Operation Statistics
 - Very good until the earthquake
 - One beam induced quench
 - Worsened due after the earthquake
 - Fixed summer 2012
 - No trouble after Summer 2012
- The Earthquake
 - Damage to the system was minimum
 - Re-alignment was needed
- Corrector Improvement
 - Improve bus cooling and fixed problem
- Bypass Diode Bus Consolidation
 - Same implementation as LHC
- Radioactive Material Control
 - Temporal radiation control area for refrigerator maintenance

Ready for stable operation

Acknowledgments

Also thank to J-PARC, KEK, CERN staffs Mitsubishi Electric, Toshiba, Furukawa, TNSC, MYCOM, etc...