

Energy efficient beam transport by means of high current pulsed magnets

Workshop on Special Compact and Low Consumption Magnet Design 26.11.2014 C.Tenholt

Qualitative Comparison of Different Technologies

	Conventional Magnets	Superconducting Magnets	Plasma- or Lithium Lenses
Operation	Quasi static	Quasi static	Pulsed
Space requirememts	High	High	Moderate
Aperture	High	High	Moderate
Field strength/gradients	Limited	High	High
Average energy dissipation	High	Low	Low
Cost	Low	High	Moderate
Beam shape	bunched/cw	bunched/cw	Bunched

Opportunities of Improvement (bunched mode)

- Increase of magnetic field gradient
 - Independence from magnetic saturation (no iron core)
 High current pulses
- Energy saving
 Pulsed currents vs. cw
 Energy efficient circuit
- Space gain

Smaller aperture enabled by higher field gradients

First efforts: Rod conductor quadrupoles

Rod conductor quadrupole

- At least one rod per pole
- Rods supplied symmetrically by pulsed current (homogeneous fields)
- Polarity defined by direction of electric current
- Tested doublet with r₁=0.012m and r₂=0.02m
 - ➢ G₁=92.5 T/m at 42kA
 - ➢ G₂=42.75 T/m at 55kA
 - → Focal radius: 150µm at beam charge 26+, rigidity 6Tm

First efforts: Foil quadrupoles

- Copper conductor etched
 on fotoresist foils
- High magnetic fields by stacking and filament winding of foils

→ Experiences: Foils are not capable of leading necessary currents

New approach: Cos(20)-shaped wire conductors

Lens with boxed electrical circuit (electrical shielding and safety) underneath:

- Capacitor (green)
- Disc resistor (black)
- Switch (grey)

All linked by special adaptors for low inductivity and low influence of Skin Effect

New approach: Lens cross section

Target values

	Prototype Quadrupole
Gradient	80 T/m
Length	0.65 m
Pulse length	170 μs
Peak current	400 kA (31 kA)
Peak voltage	23 kV (4.7 kV)
Energy @23 kV	119 kJ (5 kJ)
Inductivity	1,3 µH
Capacitor	450 μF
Forces	200 kN

New approach: Construction characteristics

<u>Ceramic beam tube</u>

<u>Cos(20)-shaped conductor</u>

600 strands of bunched, drilled copper wires (diameter of 0.355 mm) insulated against each other (providing homogenous current distribution)

– <u>PEEK</u>

Damping of mechanical stress caused by current pulses

<u>Shielding</u>

Thin silicon iron discs, laminated in beam direction (increase of enclosed magnetic field)

– <u>Housing</u>

Protection of nearby equipment against electromagnetic noise, absorption of mechanical forces

Conductor

Formation of poles

- winding of one single conductor
- symmetric ends (as far as possible)

Conductor

- bunches of thin, drilled, insulated strands (image on the left)
- cos(2**0**) cross section

CST-Simulation: magnetic field

Electrical Circuit of the Prototype

Energy recovery

Problem:

Capacity

Energy recovery

Comparison Pulsed Quadrupole – Conventional Quadrupole

	Conventional Quadrupole	Pulsed Quadrupole		
Gradient	10 T/m	15.38 T/m		
Length	1 m	0.65 m		
GxL	10 T	10 T		
Apertur radius	0.065 m	0.056 m		
Peak current	270 A	77 kA		
Peak voltage		4.7 kV		
Stored energy	5,5 kJ (in magnet gap)	5 kJ (in capacitor)		
	SIS18 repetition rate: 1 Hz			
Power	18 kW	5 kW (810W with energy recovery circuit)		
EUCARD 655				

Estimation of maximal pulse repetition rate

Repetition rate

Prototype

(decisive factor: supplying power):4500 V/30 kA200 sec reloading of capacitor

1500 V/10 kA67.5 sec reloading of capacitor

→ cooling of damping resistor necessary

Maximum value

(decisive factor: lens' cooling) see picture on the right

- 23 kV/400kA
- 21 sec (complete cooling of the lens)

 \rightarrow (no damping resistor – antiparallel Diode)

November 2014: Delivery of lens to GSI

- tests (low performance max. 4500V/31000)
- magnetic field measurments (dc and pulsed mode as far as possible)

Future

- tests with beam
- assembling of energy recovery circuit → test with lens and dummy inductivity

