
09/22/08 1

A lightweight job execution control
framework

Jakub T. Moscicki, CERN/IT

2EGEE 08, Istanbul, 22-28 September 2008 Jakub T. Moscicki

DIANE tool

● Help smaller scientific communities using
distributed (Grid) resources more efficiently
– reduce the application execution time

– reduce the manual work overhead by providing fully
automatic execution and failure management,

– efficiently integrate local and Grid resources

● R&D project started in 2000
– http://cern.ch/diane

– now part of EGEE Respect suite

– part of Grid Application Support Services at CERN

● together with Ganga (Job Management Interface)
● http://cern.ch/ganga

3EGEE 08, Istanbul, 22-28 September 2008 Jakub T. Moscicki

Grid Application Support
@ CERN

● Infrastructure for smaller communities/generic
applications
– a set of configured master hosts hosted at CERN

– Grid resources: GEAR VO

– tools: DIANE + Ganga

● Applications

HARP GarfieldGarfield

http://images.google.com/imgres?imgurl=http://www.cartonionline.com/tv/italia1/garfield/garfield.gif&imgrefurl=http://ghettodriveby.com/garfield/&h=300&w=225&sz=8&hl=en&start=1&tbnid=wggqoQL_oN1JiM:&tbnh=116&tbnw=87&prev=/images%3Fq%3Dgarfield%26svnum%3D10%26hl%3Den%26rls%3Dcom.microsoft:*%26sa%3DN
http://www.itu.int/home/index.html
http://www.itu.int/home/index.html

4EGEE 08, Istanbul, 22-28 September 2008 Jakub T. Moscicki

Web-portal for biologists
● ASGC portal for virtual screening (docking)

– AvianFlu Drug Search et al. (H.C.Lee 2006)

– web-interface created by biologists

– in the backend: DIANE and Ganga to handle Grid jobs

5EGEE 08, Istanbul, 22-28 September 2008 Jakub T. Moscicki

Simple computation model

● Master/Worker processing of
tasks

– RunMaster executes on a
local host

– WorkerAgents execute as
Grid jobs

● TaskScheduler is a software
component (python module)
which may be arbitrarily
customized or replaced

● application “wrappers”
(plugins):

– ApplicationWorker

– ApplicationManager

6EGEE 08, Istanbul, 22-28 September 2008 Jakub T. Moscicki

Architecture

7EGEE 08, Istanbul, 22-28 September 2008 Jakub T. Moscicki

Example: Lattice QCD @ Grid

● Study the behaviour of the critical point
of quark-gluon plasma
– The scientific results obtained by the LQCD project were

published in a paper P. de Forcrand et al.: "The chiral
critical point of Nf = 3 QCD at finite density to the order
(μ/T)4" and are available at http://arxiv.org/pdf/0808.1096

● Monte-Carlo simulation of discrete space-
time lattice
– need a lot of CPU

– relatively small data (~Gbs)

http://arxiv.org/pdf/0808.1096

8EGEE 08, Istanbul, 22-28 September 2008 Jakub T. Moscicki

Structure of LQCD application

● Monte-Carlo simulation of discrete space-
time lattice
– snapshots of the lattice state

are evolved iteratively

– snapshot file is 10MB large

– single iteration takes around
1.5 hours on a WN

– task = one iteration

● 16 beta values x N random seeds =
400-1500 snapshots

⇧⇧

......⇧⇧

snapshotsnapshot
iter 77iter 77

snapshotsnapshot
iter 78iter 78

betabeta
5.185.18

⇧⇧

......⇧⇧

snapshotsnapshot
iter 351iter 351

snapshotsnapshot
iter 352iter 352

betabeta
5.18255.1825

⇧⇧

......⇧⇧

snapshotsnapshot
iter 233iter 233

snapshotsnapshot
iter 234iter 234

betabeta
5.18455.1845

9EGEE 08, Istanbul, 22-28 September 2008 Jakub T. Moscicki

Scheduling of snapshots

● constant overhead

– each snapshot must diverge from the
original state in order to be significant
-> 300-500 iterations are “wasted”
i.e. 20-30 CPU days

● how to best schedule the iterations?

– make convergence of snapshots equally slow for all beta values

– or prefer some beta values if more important scientifically?

● long-term optimizations with the user

“wasted”

?

computing

results
scheduling

optimization

analysis

weeks hours

3 months

10EGEE 08, Istanbul, 22-28 September 2008 Jakub T. Moscicki

Scheduling of snapshots
(1) 400 snapshots, 16 betas

all equal

(2) 1500 snapshots, 16 betas
priority window left-to-right
equal outside of the window

(3) 1000 snapshots, 10 betas
priority left-to-right

11EGEE 08, Istanbul, 22-28 September 2008 Jakub T. Moscicki

Task Scheduler plugin
● LQCD Task Scheduler plugin

– simple python class (around 100 lines)

● standard DIANE scheduler
– available out-of-the box

– useful for most trivially parallel applications

– simple scheduling policies
similar to gLite WMS: retry counts, etc.

priority

max

beta (LQCD simulation parameter)

12EGEE 08, Istanbul, 22-28 September 2008 Jakub T. Moscicki

LQCD execution history

● ongoing since May 2008
– several phases (application and system upgrades, power-

cuts, etc...)

– long periods of uninterrupted computing

● little manual maintenance overhead
– automatic task scheduling done by the master

– automatic submission of pilot agents by an AgentFactory

13EGEE 08, Istanbul, 22-28 September 2008 Jakub T. Moscicki

LQCD throughput

● ~2 million CPU hours / 3 months
– i.e. 231 CPU years

● ~4.3 TB of data transferred

● 1000 simultaneous workers

14EGEE 08, Istanbul, 22-28 September 2008 Jakub T. Moscicki

Summary

● DIANE main features
– efficient application scheduling via python plugins

– fully automatic job execution at large scale

– 100% reliability from the user perspective

● Related events at EGEE 08:
– (5) Grid-enabled Virtual Screening Service based on Grid

Application Platform

– (24) Porting ThIS on the EGEE Grid

– (42) Ganga and DIANE: powerful job management and resource

● http://cern.ch/diane

15EGEE 08, Istanbul, 22-28 September 2008 Jakub T. Moscicki

backups

16EGEE 08, Istanbul, 22-28 September 2008 Jakub T. Moscicki

Other aspects

● One aspect was addressed: scheduling

● however DIANE may be used to control very short jobs too.
Sometimes it may not be possible to statically optimize (cluster)
short jobs (ITU) and then the only option is to use a “pull”
scheduler.

● connection-oriented vs connectionless mode. possible to quasi-
interactively control the worker nodes (cutting out the Grid
scheduling overhead).

● a master may also serve as a synchronization point: e.g. one task
requires output of other tasks (workflows) or task execution should
be synchronized on some condition. such capabilities may be
achieved by plugins.

