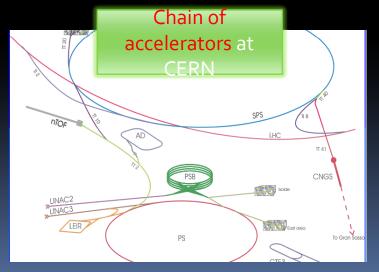
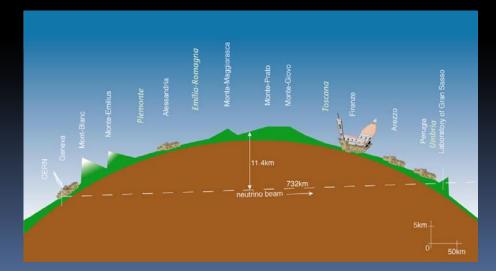
Patricia Méndez Lorenzo (CERN, IT/GS)


# CERN BEAM STUDIES INTO THE EGEE/WLCG ENVIRONMENT


## Outlook

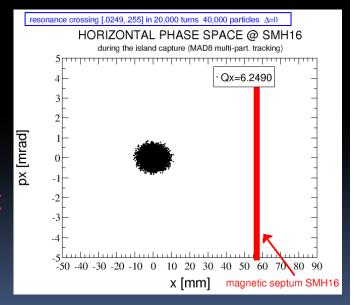
- The beam team at CERN have expressed their interest to run two different aplications into the Grid
  - Tracking
  - Collimation
- In these few slides we will present the nature of these applications and the Grid infrastructure we have defined
- Thanks to Andrea Franchi, Thomas Weiler and Frank Schmidt (Beam team at CERN) for their help

# 1st Application: Tracking

- GOAL of the analysis: Provide the OPERA detector at Gran Sasso (Italy) with large bunches of neutrinos
  - Using bunches of protons hitting a target after being accelerated by the SPS accelerator

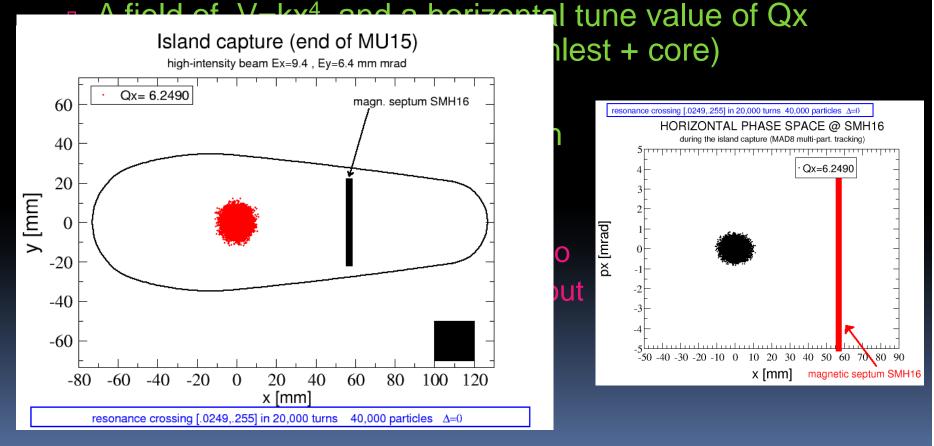





## Current extraction procedure

#### METHOD: Extraction performed in 5 turns

- Application of an magnetic field which moves the beam towards a metal blade
- The beam is shaved and the slice beyond the blade is ejected to wards the SPS
- PROBLEM: High beam loss and radiation of the beam touching the metal blade
   Proton intensity limited
   3x10<sup>15</sup> protons per cycle are required
   This beam loss decreases the intensity to 2x10<sup>15</sup>
   This limit can be technically overcome, but operational and also legal issues prevent it


#### New extraction procedure

- Basic Idea: Separation of the beam in 5 beamlets by using octupole magnets
  - A field of V=kx<sup>4</sup> and a horizontal tune value of Qx = 6.25 creates 5 islands (4 beamlest + core)
  - Variating the Qx until 6.258
    the islands are separated until 3cm
    - Separation achieved at 100,000 turns
    - Fast magnetic field then applied to move the island out of the PS without touching the metal blade



#### New extraction procedure

 Basic Idea: Separation of the beam in 5 beamlets by using octupole magnets



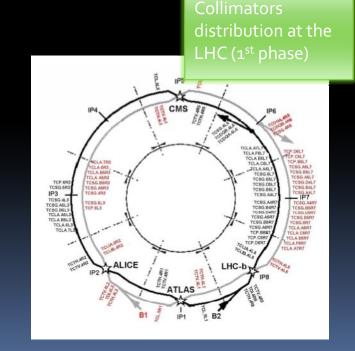
# Numerical issues (I)

- Number of particles per island
  - Equal sharing of particles (20%) among islands is required
    - Large diferences among islands would induce electromagnetic resonant fields in the SPS which can deteriorate the beam quality
  - Highly depending on the turns used to separate the islands: higher number of turns => better sharing
  - The octupole setting has to be optimized in order to ensure 20% of protons per island
- Conclusion
  - It is neccessary to perform realistic simulations over 100,000 turns to optimize the octupole setup

# Numerical issues (II)

- Height of each island
  - The octupoles induce a small coupling with the vertical plane increasing the height of the islands
  - Not measurable in the PS, it can produce beam losses in the extraction channel
  - It is impossible to figure out from the beam losses whether they are placed in the horizontal or vertical planes
- Conclusion
  - Full 2D simulations required
  - Higher computational load compared to the 1D case

# Numerical issues (III)


- Value of the fast magnetic field
  - Magnetic field rise time of 350 ns
  - In the PS the bunches of particles have a separation of 210 ns
  - At least the last bunch will touch the metal blade
    - The radiation losses must be estimated
- Conclusion
  - Simulations with large number of particles (~1<sup>E</sup>6) are required

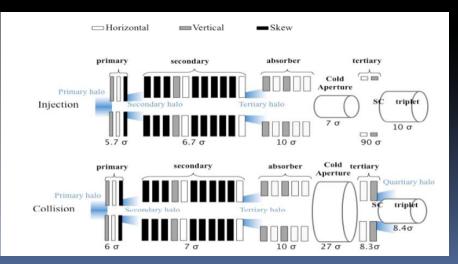
# Tracking jobs into the Grid

- Large-scale Simulation
  - Realistic number of turns : 100,000
  - Large number of particles: 1,000,000 to be split into a large number of GRID nodes to speed up simulation
- Thanks to the GRID setup, optimization studies (Octupole gradient and tune variation) can be carried out to minimize and estimate beam loss

# 2<sup>nd</sup> Application: Collimation

- GOAL of the application: Clean up of the beam losses at the LHC in a controlled way
  - Losses driven by dynamical processes and also by operational inestabilities or machine failures
- About 40 collimators around the LHC ring for the 1<sup>st</sup> phase of the experiment
- Planned to duplicate the number of collimators for the 2<sup>nd</sup> phase




#### Loss Rates at the LHC

- Summary of the specified maximum loss rates for safe operation of the LHC machine and its collimation system
  - At the nominal LHC operation (7 TeV) the beam life is 20h

| Mode      | т     | τ      | R                    | P <sub>loss</sub> |
|-----------|-------|--------|----------------------|-------------------|
|           | [s]   | [h]    | [p/s]                | [kW]              |
| Injection | cont. | 1.0    | 0.8x10 <sup>11</sup> | 6                 |
|           | 10    | 0.1    | 8.6x10 <sup>11</sup> | 63                |
| Ramp      | 1     | 0.0006 | 1.5x10 <sup>13</sup> | 1098              |
| Collision | cont. | 1.0    | 0.8x10 <sup>11</sup> | 97                |
|           | 10    | 0.2    | 4.3x10 <sup>11</sup> | 487               |

#### Numerical Issues

- Each collimation job includes:
  - Generation the halo particles hitting the primary collimator
    - About 3200 particles per job and up to 1600 jobs for each system setup
  - Simulation of
    the cleaning
    procedure for the
    generated particles



### Setup on the Grid

- New VO fully approved by EGEE: vo.sixt.cern.ch
  - Grid infrastructure in terms of services provided at CERN
  - Access to the queues, definition of a dedicated software area and storage space is required for the rest of the sites
- Tracking requirements
  - High picks of production followed by thorough analysis periods
  - During the active circles, the VO foresees 800 jobs per day with an average duration of 12h
  - Small output files
- Collimation requirements
  - Intended to run during the whole LHC life
  - About 1200 daily jobs of 12h of duration each
  - Small output files
- Storage requirements
  - Master copy of output files stored at CASTOR@CERN
  - Secondary copies planned to be stored in some other sites
- Current Status
  - Both analysis are being merged into the Grid using the Ganga UI for job submission and tracking