New Paradigms: Clouds, Virtualization and Co. EGEE08, Istanbul, September 25, 2008

An Introduction to Virtualization and Cloud Technologies to Support Grid Computing

Ignacio M. Llorente

dsa-research.org

Distributed Systems Architecture Research Group Universidad Complutense de Madrid

An Introduction to Virtualization and Cloud Technologies to Support Grid Computing

- Introduce virtualization and cloud from the perspective of the Grid community
- Show the benefits of virtualization and cloud for Grid computing
- Demonstrate how Grid, virtualization and cloud are complementary technologies that will cooperate in future Grid computing infrastructures
- Introduce the RESERVOIR project, European initiative in virtualization and cloud computing

Barriers for Adoption of the Compute Grid Model

An Introduction to Virtualization and Cloud Technologies to Support Grid Computing

- High degree of heterogeneity (software & hardware)
- · High operational costs
- · Isolate and partition amount of resources contributed to the Grid
- Specific environment requirements for different VOs

Grids are difficult to mantain, operate and use

Virtualization Platform

An Introduction to Virtualization and Cloud Technologies to Support Grid Computing

Separation of Virtual Machine from Physical Infrastructure

- A VM is an isolated runtime environment (guest OS and applications)
- · Multiple virtual systems (VMs) to run on a single physical system

Benefits of Virtualization Platforms

- Natural way to deal with the heterogeneity of the infrastructure
- · Allow partitioning and isolating of physical resources
- · Execution of legacy applications

dsa-research.org

DISTIDUTED MAHAGEMENT OF AMO

An Introduction to Virtualization and Cloud Technologies to Support Grid Computing

Extending the Benefits of Virtualization to a Physical Cluster

- · VM Managers creates a distributed virtualization layer
 - Extend the benefits of VM Monitors from one to multiple resources
 - · Decouple the VM (service) from the physical location
- Transform a distributed physical infrastructure into a flexible and elastic virtual infrastructure

Benefits of VM Managers

- · Centralized management
- · Balance of workload
- · Server consolidation
- · Dynamic resizing of the infrastructure
- · Dynamic cluster partitioning
- Support for heterogeneous workloads
- · On-demand provision of VMs

dsa-research.org

integration of a virtualized Gluster within a Grid

An Introduction to Virtualization and Cloud Technologies to Support Grid Computing

Benefits of Virtualization for Existing Grid Infrastructures

- · The virtualization of the local infrastructure provides:
 - · Easy support for VO-specific worker nodes
 - · Reduce gridification cycles
 - · Dynamic balance of resources between VO's
 - · Fault tolerance of key infrastructure components
 - · Easier deployment and testing of new middleware distributions
 - · Distribution of pre-configured components
 - · Cheaper development nodes
 - · Simplified training machines deployment
 - · Performance partitioning between local and grid services

Solve many of the obstacles for Grid adoption

Cloud as Provision of Virtualized Resources

An Introduction to Virtualization and Cloud Technologies to Support Grid Computing

A Service to Provide Hardware on Demand (laaS)

- · Cloud systems provide virtualized resources as a service
- Provide remote on-demand access to infrastructure for the execution of virtual machines

Simple Interfaces for VM Management

- Submission
- Control
- · Monitoring

- · Main components of a Cloud architecture:
 - Front-end: Remote interface (Eucalyptus, Globus Nimbus...)
 - Back-end: Local VM manager (OpenNebula)

Infrastructure Cloud Services

- · Commercial Cloud: Amazon EC2, GoGrid, Flexiscale...
- · Scientific Cloud: Nimbus (University of Chicago)

dsa-research.org

Conclusions

An Introduction to Virtualization and Cloud Technologies to Support Grid Computing

About the Coexistence of Grid, Virtualization and Clouds

- Virtualization, cloud, grid and cluster are complementary technologies and will coexist and cooperate at different levels of abstraction
- Virtualization and cloud do NOT require any modification within service layers from both the administrator and the end-user perspectives
- Separation between service and infrastructure layers will allow the application of the utility model to Grid/cluster/HPC computing

An Introduction to Virtualization and Cloud Technologies to Support Grid Computing

THANK YOU FOR YOUR ATTENTION!!! More info, downloads, mailing lists at www.OpenNebula.org

OpenNebula is partially funded by the "RESERVOIR- Resources and Services Virtualization without Barriers" project EU grant agreement 215605

www.reservoir-fp7.eu/

Acknowledgements

- Javier Fontan
- · Tino Vazquez
- Rubén S. Montero
 Rafael Moreno