ATLAS Upgrade Overview

Phil Allport ATLAS Upgrade Coordinator 3/6/14

- Brief Overview of Phase-0 Upgrades
- Reminder of Phase-I
- Phase-II
 - New Tracker
 - Pixels
 - Strips
 - HV/HR-CMOS
 - Layout and Schedule
 - Other Sub-detector Plans
 - Revised Cost Profile
- Conclusions

New LHC schedule beyond LS1

Only EYETS (19 weeks) (no Linac4 connection during Run2)

- LS2 starting in 2018 (July)
- **18** months + 3months BC (Beam Commissioning)
- LS3 LHC: starting in $2023 \Rightarrow 30$ n injectors: in $2024 \Rightarrow 13$ n
 - $3 \Rightarrow 30 \text{ months} + 3 \text{ BC}$ $\Rightarrow 13 \text{ months} + 3 \text{ BC}$

LHC schedule approved by CERN management and LHC experiments spokespersons and technical coordinators Monday 2nd December 2013

Current Shutdown Phase-0

- New insertable pixel b-layer (IBL) + new pixel services (nSQP) + new small Be pipe
- New Aluminum beam pipes to prevent activation problem and reduce muon BG
- New evaporative cooling plant for Pixel and SCT + IBL CO₂ cooling plant
- Replace all calorimeter Low Voltage Power Supplies
- Finish the installation of the EE muon chambers staged in 2003 + additional chambers in the feet and elevators region + RPC gas consolidation
- Upgrade the magnets cryogenics and decouple toroid and solenoid cryogenics
- Add specific neutron shielding where necessary (behind endcap toroid, USA15)
- Revisit the entire electricity supply network (UPS in particular)
- Where possible prepare Phase 1 upgrade (services, AFP, ZDC, FTK,)
- Re-align the barrel calorimeter and ID + consolidation of infrastructure and services + general maintenance
- Some early installation of (Phase-I) trigger upgrades which are required for above design luminosity operation are being anticipated for Run 2
 - CTP: CTPCore and CTPOut
 - Muon endcap trigger with current small wheel (reduce fake rate)
 - Tile outer layer trigger (to help L1 muon in transition region)
 - nMCM (needed for bunch train correction)
 - CMX and L1Topo
 - Dual output HOLAs for FTK

Current Shutdown Phase-0

New insertable pixel b-layer (IBL) + new pixel services (nSQP) + new small **Be pipe** ATLAS COLLABORATION CERN-RRB-2012-028-Appendix 1

ATLAS Insertable **B**-Layer

Design

CERN-LHCC-2010-013 / ATLAS-TDR-019

Technical

Report Work Responsibility Barcelona

Bonn CERN Dortmund (/MPI) KEK Liverpool Liubliana LPNHE/Orsay Manchester/Glasgow New Mexico Ohio SU Oslo/Bergen Prague AS Santa Cruz SLAC/Stony Brook Toronto(/Carleton) Udine(/Trento)

Addendum No. 01

to the Memorandum of Understanding for Collaboration in the Construction of the ATLAS Detector

Construction of the ATLAS Insertable B-Layer (IBL) Sub-Detector

Prototype:	3D, Planar; Production: contribution
Prototype:	3D, Planar, Diamond; Production: contribution
Prototype:	3D, Planar, Diamond; Production: contribution
Prototype:	Planar; production: wafer QC
Prototype:	Planar; Production: contribution
Prototype:	Planar; Production: contribution
Prototype:	Diamond
Prototype:	Planar; Production: contribution
Prototype:	3D; Production: contribution; QC supervision (Manchester)
Prototype:	3D, Planar, Diamond; Production (silicon): contribution
Prototype:	Diamond
Prototype:	3D; Production: contribution
Prototype:	Planar; Production: contribution
Prototype:	Planar, (3D); Production: contribution
Prototype:	3D; Production: contribution
Prototype:	Diamond
Prototype:	3D, Planar; Production: contribution
	the second se

ATLAS: Inner Tracking Detectors

Insertable B-Layer

- New pixel layer around new smaller beam pipe
- Current pixel package was brought to surface allowing:
 - IBL support tube insertion at surface
 - New services installed to fix problems and improve R/O bandwidth (nSQP)
 - New diamond beam monitors with IBL (FE-I4) ASICs
- Reinserted and being reconnected
- IBL Inserted into ATLAS on 7th May
 - Services being connected and tested
 - Preparing for operation and commissioning

Off-detector

 New RODs can read-out 32 FE-I4 ASICs at a rate of 160 Mbit/s using 4 S-Links (also supports the dual output required for FTK)

Existing B-layer new beam-pipe

IBL mounted on beam-pipe

Insertable B-Layer

FE-I4 Pixel Chip (26880 channels)

19 x 20 mm² 130 nm CMOS process, based on an array of 80 by 336 pixels (each 50 x 250 μ m²)

3D Sensor

- Both electrode types are processed inside the detector bulk
- Max. drift and depletion distance set by electrode spacing
- Reduced collection time and depletion voltage 12 Double Chip (planar)

p⁺ n⁺ p⁺

sensor

FE chip

 "classic" sensor design

Planar Sensor

- oxygenated n-in-n
- 200µm thick
- Minimize inactive edge by shifting guard-ring under pixels (215 µm)
- Radiation hardness proven up to 2.4×10¹⁶ p/cm²
- n-n FE-I4 R/O Chip 27 k Pixels 87 M transistors -2 cm -2 cm

3D

Y AN

12M Pixel/stave

~ 1.9% X₀

8

8 Single Chip (3D)

3D

electrodes

Planar

Module: Sensor + 1x or 2x FEI4

Phase-I Upgrade (LS2) Starts Middle 2018

In 2013, 4 TDRs for Phase-I construction projects were prepared within ATLAS, approved by the CB and submitted to the LHCC

As of 5th December 2013 all 4 were endorsed by the LHCC Upgrade Cost Group approval reported at 4th March LHCC MoUs, with signatures from the CERN Director of Research and Computing, are now in circulation to Funding Agencies.

New Small Muon Wheels

(CERN-LHCC-2013-006)

The innermost station of the muon end-cap

Located between end-cap calorimeter and end-cap toroid

- In furthest forward direction, chamber efficiencies fall with hit rate as luminosity goes well above the design values
- Rate of L1 muon triggers exceeds available bandwidth
 unless thresholds raised
- → Replace "small" muon wheels
- Kill fake muon triggers by requiring high quality (σ_θ~ 1mrad) pointing to interaction region
- Precision chambers combine sTGC and micromegas technologies for robustness to Phase-II luminosities

New Small Muon Wheels

n

(CERN-LHCC-2013-006)

Micromegas Prototype

Mechanical Prototype

- In furthest forward direction, chamber efficiencies fall with hit rate as luminosity goes well above the design values
- Rate of L1 muon triggers exceeds available bandwidth unless thresholds raised
- **Replace "small" muon wheels**
- Kill fake muon triggers by requiring high quality (σ_{θ} ~ 1mrad) pointing to interaction region
- Precision chambers combine sTGC and micromegas technologies for robustness to Phase-II luminosities

- A pattern consists of a Super-Strip in each layer (10s of pixels/strips wide).
- Uses HEP-specific content addressable memory (CAM) custom chip.
- Patterns determined from full ATLAS simulation.
- $\sim 10^9$ patterns see each hit almost simultaneously.
- When hits have all been sent off detector, pattern recognition is ~ done.

 \rightarrow This is then followed by FPGA based track fitting (1 fit/ns)

Many boards in pre-production and pre-final CAM chip version submitted Designed for installation before Phase-I to provide HLT with full tracking at start (For Phase-II need to speed up to fit tracks in RoI as input to Level-1.)

LAr Electronics Upgrades

-1Calo Efficiency

Layer 3 'Superce

 $\eta = 0$

- Key target (as for New Small Wheel) is to maintain high efficiency for Level-1 triggering on low P_T objects (here electrons and photons)
- In the LAr calorimeter this implies changes to the front-end electronics to allow finer granularity to be exploited at Level-1

chnical esian epor

(Phase-I Level-1 designed to be able to become Level-0 at Phase-II.)

0.85

R

TDAQ Upgrades L1Calo

Level-1:

Phase I: completely new L1 electron and jet triggers.

Very complex ATCA HCAL modules. Requires mastery (analogue) of 6-10 Gb/s signal handling. R&D with demonstrator to check simulations of distribution on boards

HLT:

ATI AS

Phase-I Upgrade

echnical Design Report

System

- Increase DataFlow throughput => higher request rates, more data per request
- Maintain rejection & limit rise of CPU times
- Provide for new detectors: FTK, IBL, NSW

Dataflow:

New ROB being implemented on C-RORC hardware

HLT core software:

- Merge L2 & EF:
 - Upgrading HLT Steering software
 - Implementing new chains in Trigger menu
- Minimize cost of Trigger selection (cost \propto data rate & trigger rates & CPU) ٠

TOBs

ATLAS Forward Proton (AFP) ATLAS LHC beam High pT event ATLAS 210 beam line. beam line Diffracted protons 206 m 214 m **3D Si** 3D Si 214 m Timing ATLAS review process 5 Initial Kick off EB CB IMOU LHCC and RRB Institutes design endorsement TDR approval approval meeting review

AFP physics review looked at capabilities in dedicated low <µ> short runs and concluded in January 2014:

The proposed physics programme of AFP special runs to take place between LS1 and LS2 includes some diffractive and QCD physics topics which cannot otherwise be covered by ATLAS and which will be of substantial interest to a sizable external community. These include dijet and W boson production in single diffractive dissociation and Double Pomeron Exchange dijet production with double proton tags.

Technical review report (May 2014) encouraged AFP to proceed to kick-off meeting, request EB approval and to target CB endorsement in near future

New LHC schedule beyond LS1

Only EYETS (19 weeks) (no Linac4 connection during Run2)

LS₂ starting in 2018 (July)

LS3

injectors: in 2024

- 18 months + 3months BC (Beam Commissioning)
- LHC: starting in $2023 \Rightarrow 30 \text{ months} + 3 \text{ BC}$
 - 13 months + 3 BC=>

Phase-II Upgrade (LS3) Starts End 2022

Phase-II Detector Upgrades

Integrated radiation levels (up to 2-3×10¹⁶n_{eq}/cm²) and plan to cope with up to 200 interactions every 25ns Implications of this include:

- New Inner Detector (strips and pixels)
- Trigger and data acquisition upgrades
- L1 Track Trigger
- New LAr front-end and back-end electronics
- Possible upgrades of HEC and FCal
- New Tiles front-end and back-end electronics cover
- Muon Barrel and Large Wheel trigger electronics
 Possible upgrades of TGCs in Inner Big Wheels
- Forward detector upgrades
- TAS and shielding upgrade
- Various infrastructure upgrades
- Common activities (installation, safety, ...)
- Software and Computing

Cold

ATLAS: New All-silicon Inner Tracker

22

Forward Pixel Services

- Larger area sensors (n-in-p) quads/sextuplets produced on 150mm diameter wafers with several foundries **RD50**
- Irradiated quad pixel modules studied in test-beam with excellent performance
- Prototyping of local supports for various concepts has been carried out
- A number of support designs and service routings have been studied FE-T65-1 – Single Pixel

180 um

New All-silicon Inner Tracker

Pixel Detector

Analog - 50 µm

- n-in-n, n-in-p planar, 3D and diamond sensors proved to doses up to 2×10¹⁶n_{eq}/cm² and 1Grad
- Probably use TSMC 65nm technology which should allow pixel sizes down to 50µm×50µm or 25µm×100µm (RD53)
- Test structures in 65nm produced and studied after irradiation

Possible Barrel Support Concept

Sensor Inefficiency vs. Fluence and Voltag

RD53 Summary

 Highly focused ATLAS-CMS-LCD/CLIC RD collaboration to develop/qualify technology, tools, architecture and building blocks required to build next generation pixel chips for very high rates and radiation

- Synergy with other pixel projects when possible
- Centered on technical working groups

Baseline technology: 65nm

- CERN frame contract/NDA/design kit .
- Will evaluate alternatives ("emergency" plan)
- 17 Institutes, 100 Collaborators
- Initial work program of 3 years

IBM announced (Feb 2014) foundries for sale New CERN contract with TSMC until end 2017 Both 65 nm and 130 nm Mixed signal design kit available for the 65 nm 2 metal stacks: 6+1 and 9+1 130 nm could be used as an alternative to IBM Design kit being developed Radiation hardness tests to be completed

Goal: Full pixel chip prototype 2016

- Working groups have gotten a good start.
- Common or differentiated final chips to be defined at end of 3 year R&D period

New All-silicon Inner Tracker

Strip Detector

- New prototype n-in-p sensors delivered with 4 rows of 2.4cm long strips at 74.5µm pitch
- New (256 channel) 130nm CMOS ASIC received (resubmission delivery end June)

8 double-sided

module 250nm super-module

- Many strip modules (single and double sided) prototyped with 250nm ASICs
- Large area stave DC-DC prototype (120cm×10cm) produced and under study

Serial and DC-DC powering studied in detail on short versions of 250nm stave

4 row wire

- Several other new chips (HCC, HV multiplex, SP, DC-DC,..)
- Hybrid/module designs to use these completed

Module with on-board DC-DC converter

- Local supports extensively prototyped and further material reduction achieved
- Progress in Petal and Stave support designs
- End-of-stave card for 130nm developed

New All-silicon Inner Tracker Strip Detector

Hybrid with 5+5 ABC130

With one of two columns of strips bonded

- Thin build FR4 hybrid made quickly
- I0 ABC 130 attached, 5 off "FIB'd" and 5 off "non-FIB'd"
- All 10 ABC130s linked serially (for data readout) with common TTC bus
- Wire-bonding much simpler/faster
 - Benefit of collaborating with asic designers to 'fix' geometry
 - Hybrid/module behaves as expected:
 - Data Passing at 80MHz RCLK works
 - Hybrid draws ~810mA when configured (PTOTAL~ 1.2W/hybrid)
 - Total power consumption of ~3W/module (inc.HCC)
 - Current ABCN-25 module power consumption is ~20W
 - Output noise as expected and extremely regular

Shield box height

Thermo-Mechanical Module with

compact DCDC converter

6.5mm

HV/HR-CMOS R&D

Potential technologies under study to bring some of the advantages of monolithic active pixel sensor (MAPS) technology to the ITk.

Already installed at STAR (RHIC)

and proposed for ALICE and ILC

- Hybrid Pixels with "smart" diodes
 - HR- or HV-CMOS as a sensor (8")
 - Standard FE chip
 - Ex: CCPD on FE-I4
- CMOS Active Sensor + Digital R/O chip
 - HR- or HV-CMOS sensor + CSA (+Discriminator)
 - Dedicated "digital only" FE chip
- Monolithic Active Pixel Sensor on a fully depleted substrate (DMAPS)
 - HR-CMOS process

analog Wafer to wafer processing bonding

Diode + Amp + Digital

Hybrid pixel detectors

- Charge collection by drift in depleted bulk → high signal and radiation hardness
- Full CMOS
- High cost (sensor & hybridization)
- High material budget

MAPS

- Charge collection by diffusion in epi layer → small signal and moderate radiation hardness
- Usually not full CMOS
- Low cost
- Low material budget

Could also envisage using the "smart diode" approach to propose a single-sided strip replacement with z encoding Many technologies under investigation for potential use in pixel system at higher radii or allowing less expensive 5th layer Cost evaluation depends critically on yield estimates for large format detectors

New All-silicon Inner Tracker

Integration and Performance

- Cooling, services, integration, removal, installation etc all being studied and key is understanding activation issues
- **Optoelectronics (GBT) being working on in common with other experiments**
- DAQ/DCS exists for prototype operation but not yet designs for final system
- **Detailed layout optimisation underway to** understand cost/performance trade-offs

pileup=50, ITk

e pileup=140, ITk

Baseline Tracker Performance

Strip barrel

Strip total

Strip end-cap

Number of Pileup Interactions

0.85

0.80

0.75

Number of Pileup Interactions

ITk: Draft Schedule

CB= collaboration board, EB=executive board, IMOU=interim memorandum of understanding, UCG=upgrade cost group, RRB= Resources review board, IDR=initial design review (internal), TDR=technical design report (external)

Phase-II Split TDAQ L1 Scheme

Simulation studies show that including a track trigger Muon complements muon and EM triggers

- Improves muon P_T resolution
- Improves EM identification by matching to track

Implemented as 2-level scheme to accommodate legacy electronics and reduce links from strip tracker

→ reuses Phase-I L1 trigger improvements for new L0

LOA scheme and buffering fully integrated in ABCn130 ASIC

Note this scheme impacts the electronics in all systems and provides possibilities to exploit the L0/L1 structure to have more extensive information from all sub-detectors at L1

Phase-II Split TDAQ L1 Scheme

Note latencies, rates and use of R3 read-out are evolving in the light of improved understanding of possible trigger menus for Phase-II and exploration of higher speed data transfer

TDAQ and Detector Readout

- New TDAQ architecture requires upgrade to readout of detector systems
 - General comments on need for upgrades of detector readout:

•

- In addition to the changes in TDAQ architecture. Upgraded readout electronics is required due to ageing and radiation damage.
- More functionality moved to the counting room, taking advantage of large bandwidth optical links to move data off-detector; allows use of FPGAs rather than dedicated ASICs
- Custom low power (IpGBTx) 4.8Gbps rad-hard ASIC can be reasonably assumed available in low mass custom package (or 9.6 Gbps with similar power as current GBTx)
- Detectors are evaluating a common readout architecture based on GBTs and common Front-End interface

The ATLAS Experiment

Phase-II Upgrades to LAr Electronics

Replace all FE boards (warm)

- Gives flexible, free-running architecture sending data off-detector for all bunch-crossings
- Natural evolution of Phase-I new digital trigger boards
- Replacement required due to aging and radiation limits
- Allows implementation of L0/L1 scheme using Phase-I L1 upgrades for Phase-II L0
- Replace Hadronic Endcap Calorimeter electronics if required
 - Replace HEC cold (GaAs) preamps if significant degradation in performance expected during HL-LHC operation but this requires FCAL removal so new sFCAL would also need to be installed (Indications that expected doses are manageable given better dose projections but aging of electronics still needs to be understood)
- Replace just the Forward Calorimeter (FCal) if required
 - Install new sFCAL in cryostat or miniFCAL in front of cryostat if significant degradation in current FCAL expected at HL-LHC

Reduce gap sizes from 269/375/500 µm, new summing

boards and cooling loops (to avoid boiling)

Performance of cold HEC electronics under irradiation

miniFCAL absorbs energy upstream of current FCAL Cold Cu/LAr device [100µm LAr gaps]

Tile Calorimeter

- No major changes foreseen in the readout or trigger during Phase-I
- In Phase-II complete FE&BE electronics replacement.
 - Full digitization of data at 40MHz and transmission to off-detector system

Up Link only

Present

Upgrade

~80 Tbps

8192

10 Gbps

32?

4

2 Tbps

~ 5 Gbps

< 80 Gbps

Daughter-board

Digital information to L1/L0 trigger

- Also significantly improve robustness
 - Reduce the complexity and connections inside the front-end drawers. Moving from dependent drawers to independent mini-drawers (readout and power).
 - Use a real-complete redundant readout from cell to back-end
 - Redundant Power Supply system introducing Point-of-Load regulators

Muon Electronics Upgrade

BOL

BML

BIL

Replace existing electronics to accommodate:

- Increased level-1 trigger latency.
- Need for sharpening the trigger threshold using MDT precision chamber hits at level 0/1.

Features of the new RPC electronics:

- Capable of higher level-1 trigger rate and longer latency.
- Time-over-threshold mode to measure charges deposited on the pick-up strips.
 - → Centroid of the charge distribution for improved track point resolution.

Features of the new TGC electronics:

- Existing on-chamber ASD pre-ampliers will be kept.
- New TGC read-out electronics chain compatible with HL-LHC • requirements with most of the logic functions moved to radiation free zone (USA15).

→ Use of FPGAs for the first level trigger decision

Features of the new MDT electronics:

- Capable of level-1 trigger rate and longer latency in high background regions.
- Additional fast read-out chain for MDT level-0/1 trigger.

Possible Extensions to Large η

Physics Channels Under Investigation

SM	 VBS W+W+ for VBF jet reconstruction Tribosons as multi-lepton measurement reference Inclusive W/Z production Exclusive processes (γγ ->WW)
SUSY	 VBF production for EWKinos & optimisation for VBF reconstruction JP determinations for observations of SUSY states t-channel processes for stop production
Higgs	 Di-Higgs reconstruction/acceptance in bbgg and bbττ. VBF Di-Higgs production modes H->WW for fwd jet veto & b-jet veto optimization H->4I for optimization of lepton coverage H->WW; H->tτ for optimization of VBF reconstruction Higgs invisible and MET requirements t-channel mode for single-top associated H production
Exotics	 JP determinations for Z' versus KK graviton Single-VLQ t-channel production
top	Single-top modes like t-channel production with very forward topology for light jet and b-jet reconstruction

Studies of physics motivations and requirements are proceeding in parallel with studies of possible technical options

• Extend tracking to η>4?

Pixel extension in "ring design"

• Segmented timing detectors at MBTS location?

• New FCAL with improved timing and granularity?

• Pixelated muon tagger behind ECAL $\eta = 2.7 - 4.5$?

• Muon spectrometer with magnetized forward shielding?

Cost Time Profile Lol Core Costs

Tracker total: 132 MCHF out of 231M CHF (plus 45 MCHF of total possible additional costs)

Phase-I LoI Costs see:

https://edms.cern.ch/document/1164764

Phase-II LoI Costs see:

https://edms.cern.ch/document/1258343

Summary: from now to LS2 (Phase-I)

All Upgrades

New LHC schedule beyond LS1

Only EYETS (19 weeks) (no Linac4 connection during Run2)

=>

LS2

- starting in 2018 (July) 18 months + 3 months BC (Beam Commissioning)
- LHC: starting in $2023 \Rightarrow 30 \text{ months} + 3 \text{ BC}$ LS3 injectors: in 2024
 - 13 months + 3 BC

Re-profiled Phase-II Core Costs

New ATLAS PHASE II upgrade (LS3) with Options Included

		it will	it might												
		happen	happen	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	total
		[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]
1	New Inner Detector	131.500	26.000	0.000	6.707	17.906	31.919	33.836	29.284	18.565	14.373	4.911	0.000	0.000	157.500
2	LAr upgrades	32.124	15.096	0.000	0.700	4.458	4.519	6.895	11.554	11.371	7.162	0.289	0.091	0.182	47.220
3	Tiles upgrades	7.483	2.517	0.000	0.000	0.000	0.000	1.499	2.177	5.439	0.804	0.080	0.000	0.000	10.000
4	Muon spectrometer upgrades	19.632	0.500	0.000	0.103	0.282	0.692	3.888	5.169	6.922	2.871	0.205	0.000	0.000	20.132
5	TDAQ upgrades	23.315	0.900	0.000	0.000	0.000	0.000	0.500	2.020	5.020	7.355	5.000	4.320	0.000	24.215
6	Infrastructure items	16.280	0.000	0.000	0.000	0.100	0.400	0.600	2.850	4.100	4.880	3.350	0.000	0.000	16.280
	TOTAL	230.334	45.013	0.000	7.510	22.746	37.530	47.218	53.054	51.416	37.445	13.835	4.411	0.182	275.347

Re-profiled Phase-II Core Costs

New ATLAS PHASE II upgrade (LS3) with Options Included

		it will	it might												
		happen	happen	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	total
		[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]
1	New Inner Detector	131.500	26.000	0.000	6.707	17.906	31.919	33.836	29.284	18.565	14.373	4.911	0.000	0.000	157.500
2	LAr upgrades	32.124	15.096	0.000	0.700	4.458	4.519	6.895	11.554	11.371	7.162	0.289	0.091	0.182	47.220
3	Tiles upgrades	7.483	2.517	0.000	0.000	0.000	0.000	1.499	2.177	5.439	0.804	0.080	0.000	0.000	10.000
4	Muon spectrometer upgrades	19.632	0.500	0.000	0.103	0.282	0.692	3.888	5.169	6.922	2.871	0.205	0.000	0.000	20.132
5	TDAQ upgrades	23.315	0.900	0.000	0.000	0.000	0.000	0.500	2.020	5.020	7.355	5.000	4.320	0.000	24.215
6	Infrastructure items	16.280	0.000	0.000	0.000	0.100	0.400	0.600	2.850	4.100	4.880	3.350	0.000	0.000	16.280
			•		•										
	TOTAL	230.334	45.013	0.000	7.510	22.746	37.530	47.218	53.054	51.416	37.445	13.835	4.411	0.182	275.347

New Phase-II Profile

Old LoI Based Profile for Comparison

ECFA High Luminosity LHC Experiments Workshop Physics and technology challenges 1st – 3rd October **Aix-les-Bains** France

play.py?confId=252045

https://indico.cern.ch/conferenc

Programme Committee

- P. Allport
- A. Ball
- S. Bertolucci
- P. Campana
- **D.** Charlton
- D. Contardo
- B. Di Girolamo
- P. Giubellino
- J. Incandela
- P. Jenni
- M. Krammer
- M. Mangano
- S. Myers **B.** Schmidt
- T. Virdee
- H. Wessels

Organising Committe

Contardo, D. Hudson, C. Potter

Physics and technology developments

21st-23rd OCTOBER 2014

Aix-les-Bains | France

Programme Committee:

P.Aliport | A.Ball | S.Bertolucci | F.Bordry | T.Camporesi | D.Chartton | D.Contardo | B.Di Girolano R Gubelino | M. Krammer | M. Mangano | L. Rossi | B. Schmidt | T. Virdee | J.R. Wessels | G. Willenson

> **Organising Committee:** P.Allport | D. Contardio | D. Hudson | C. Potter

and further information of https://indico.cem.ch/event/315636 necempth and comme politerecens.cl

Conclusions

- ATLAS has a coherent plan for upgrades through the coming decade to meet the challenges up to and including the HL-LHC era, which are embodied in the two LoIs and four TDRs which have been through full LHCC approval
- The understanding of the full physics potential of the HL-LHC is advancing rapidly, with greatly increased activity on both detector and accelerator preparations following the adoption by CERN Council of the Updated European Strategy for Particle Physics, with the HL-LHC as its highest priority, and the strong endorsement in the recent P5 report
- There are designs for a replacement tracker that should withstand both the pile-up and radiation conditions at the HL-LHC, with performance able to not just fully recover, but also improve on, the current capabilities at low pile-up.
- Major R&D programmes are targeting all the upgrades needed for ATLAS to operate at luminosities far above the initial design requirements.

However, it is critical for these programmes to proceed rapidly that there be adequate resources now to develop optimized, fully cost-effective solutions.

Back-up

HL-LHC Planning

- The stated target of the European strategy set the overall framework "Europe's top priority should be the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with a view to collecting ten times more data than in the initial design, by around 2030. This upgrade programme will also provide further exciting opportunities for the study of flavour physics and the quark-gluon plasma." (Adopted by CERN Council May 2013, see http://council.web.cern.ch/council/en/EuropeanStrategy/esc-e-106.pdf).
- All 4 experiments, the accelerator and the theory community were represented at the October 2013 ECFA HL-LHC Experiments Workshop at Aix-les-Bains <u>http://indico.cern.ch/conferenceDisplay.py?confld=252045</u>
 - The report from this to ECFA can be found at <u>https://cds.cern.ch/record/1631032</u> which focusses on the detector requirements and physics reach with 3000fb⁻¹
- There were also presentations on accelerator upgrade preparations but these have been to some extent superseded by more recent workshops:
 - "The Review of LHC and Injector Upgrade Plans Workshop" from 29th to 31st October at Archamps, France (**RLUIP**: <u>https://indico.cern.ch/conferenceDisplay.py?ovw=True&confld=260492</u>)</u>
 - "The 3rd Joint HiLumi LHC_LARP Annual Workshop" from 11th to 15th November at Daresbury (STFC) Laboratory, UK (<u>https://indico.cern.ch/conferenceDisplay.py?ovw=True&confId=257368</u>)
- The next in the ECFA HL-LHC workshop is planned for 21st-23rd October 2014

CERN-Council-S/106 Original: English 7 May 2013

ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Action to be taken

Voting Procedure

For Approval	EUROPEAN STRATEGY SESSION OF COUNCIL 16 th Session - 30 May 2013 European Commission Berlaymont Building - Brussels	Simple Majority of Member States represented and voting
--------------	--	---

The European Strategy for Particle Physics Update 2013

Having finalised its text by consensus at its Session of 22 March 2013, the Council is now invited to formally adopt the Update of the European Strategy for Particle Physics set out in this document.

Higgs working group report

Conveners: Sally Dawson (BNL), Andrei Gritsan (Johns Hopkins), Heather Logan (Carleton), Jianming Qian (Michigan), Chris Tully (Princeton), Rick Van Kooten (Indiana)

Authors: A. Ajaib, A. Anastassov, I. Anderson, O. Bake, V. Barger, T. Barklow, B. Batell, M. Battaglia, S. Berge, A. Blondel, S. Bolognesi, J. Brau, E.Brownson, M. Cahill-Rowley, C. Calancha-Paredes, C.-Y. Chen, W. Chou, R. Clare, D. Cline, N. Craig, K. Cranmer, M. de Gruttola, A. Elagin, R. Essig, L. Everett, E. Feng, K. Fujii, J. Gainer, Y. Gao, I. Gogoladze, S. Gori, R. Goncalo, N. Graf, C. Grojean, S. Guindon, T. Han, G. Hanson, R. Harnik, B. Heinemann, S. Heinemeyer, U. Heintz, J. Hewett, Y. Ilchenko, A. Ismail, V. Jain, P. Janot, S. Kawada, R. Kehoe, M. Klute, A. Kotwal, K. Krueger, G. Kukartsev, K. Kumar, J. Kunkle, I. Lewis, Y. Li, L. Linssen, E. Lipeles, R. Lipton, T. Liss, J. List, T. Liu, Z. Liu, I. Low, T. Ma, P. Mackenzie, B. Mellado, K. Melnikov, G. Moortgat-Pick, G. Mourou, M. Narain, J. Nielsen, N. Okada, H. Okawa, J. Olsen, P. Onyisi, N. Parashar, M. Peskin, F. Petriello, T. Plehn, C. Pollard, C. Potter, K. Prokofiev, M. Rauch, T. Rizzo, T. Robens, V. Rodriguez, P. Roloff, R. Ruiz, V. Sanz, J. Sayre, Q. Shafi, G. Shaughnessy, M. Sher, F. Simon, N. Solyak, J. Stupak, S. Su, T. Tanabe, T. Tajima, V. Telnov, J. Tian, S. Thomas, M. Thomson, C. Un, M. Velasco, C. Wagner, S. Wang, A. Whitbeck, W. Yao, H. Yokoya, S. Zenz, D. Zerwas, Y. Zhang, Y. Zhou

arxiv.org/pdf/1310.8361v1

Table 1-15. Dominant Higgs boson production cross sections at various e^+e^- collision energies. Cross sections are calculated [74] including initial-state radiation, but not beamstrahlung effects, for unpolarized beams and the enhancement due to polarized beams ($P(e^-, e^+) = (-0.8, 0.3)$ for 250, 350, and 500 GeV, baseline for the ILC; (-0.8, 0.2) for 1000 GeV, baseline for the ILC; (-0.8, 0.0) for 1.4 and 3.0 TeV, typical for CLIC.)

	Cross sections in fb $m_H = 125 \text{ GeV}$														
Mode		\sqrt{s} (GeV) =	250	350	500	1000	1400	3000							
ZH	unpolar.		211	134	64.5	16.1	8.48	2.00							
	polar.		318	198	95.5	22.3	10.0	2.37							
$\nu_e \overline{\nu}_e H$	unpolar.		20.8	34.1	71.5	195	278	448							
	polar.		36.6	72.5	163	425	496	862							
e^+e^-H	unpolar.		7.68	7.36	8.86	20.1	27.3	48.9							
	polar.		11.2	10.4	11.7	24.7	32.9	56.5							

Abstract

Snowmass 2013

This report summarizes the work of the Energy Frontier Higgs Boson working group of the 2013 Community Summer Study (Snowmass). We identify the key elements of a precision Higgs physics program and document the physics potential of future experimental facilities as elucidated during the Snowmass study. We study Higgs couplings to gauge boson and fermion pairs, double Higgs production for the Higgs self-coupling, its quantum numbers and *CP*-mixing in Higgs couplings, the Higgs mass and total width, and prospects for direct searches for additional Higgs bosons in extensions of the Standard Model. Our report includes projections of measurement capabilities from detailed studies of the Compact Linear Collider (CLIC), a Gamma-Gamma Collider, the International Linear Collider (ILC), the Large Hadron Collider High-Luminosity Upgrade (HL-LHC), Very Large Hadron Colliders up to 100 TeV (VLHC), a Muon Collider, and a Triple-Large Electron Positron Collider (TLEP).

P5 Report May 2014 at <u>http://science.energy.gov/hep/hepap/reports/</u>. Section 2.2 is particularly relevant. "Recommendation 10: Complete the LHC phase-1 upgrades and continue the strong collaboration in the LHC with the phase-2 (HL-LHC) upgrades of the accelerator and both general-purpose experiments (ATLAS and CMS). The LHC upgrades constitute our highest-priority near-term large project."

Physics Studies

Aim to measure as many Higgs couplings to fermions and bosons as possible to really test if this is the SM Higgs or a pointer to the BSM physics we know has to exist

- HL-LHC (3000 fb⁻¹): a true Higgs factory:
- \Box > 170M Higgs events produced
- □ > 3M useful for precise measurements (more than or similar to ILC/CLIC/TLEP) LHC gg→ H (50pb); e^+e^- → ZH (0.2-0.3pb)

Gives direct access to Higgs couplings to fermions of the second generation. Today's sensitivity: 8xSM cross-section With 3000 fb⁻¹ expect 17000 signal events (but: S/B ~ 0.3%) and ~ 7σ significance Higgs-muon coupling can be measured to about 10%

Physics Studies at Aix-les-Bains

51

Current Detector Radiation Simulation

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SCTPublicResults#Figures https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ApprovedPlotsPixel#Radiation_damage_plots https://twiki.cern.ch/twiki/bin/view/AtlasPublic/InDetTrackingPerformanceApprovedPlots#Alignment

³⁰ ပွ

10 F

Deliv. (fb⁻

Ľ.

ים. שיי דו¹-10

10⁻²

 10^{-3}

10⁻⁴

New All-silicon Inner Tracker

 Alternative layouts being considered which include either a further pixel layer or inclined pixel sensors attached to the same barrels (Alpine layout)

Current Silicon Microstrip (SCT) Material

Old ATLAS Barrel Module 12 ASIC of 300µm thickness for double-sided module read-out (*ie* just 6 read-out chips per side)

New ATLAS sLHC-Tracker Module will have 80 ASICs in two hybrid fingers for just one-sided read-out

Current Silicon Tracker (4 barrel strip layers)

"The barrel modules of the ATLAS semiconductor tracker".

-2

-1.5

-1

-0.5

0

0.5

1.5

eta

18

16

<u>-2.5</u>

Nucl.Instrum.Meth.A568:642-671,2006. Table 1 Radiation lengths and weights estimated for the SCT barrel module

Component	Radiation length [%Xo]	Weight [gr]	Fraction [%]
Silicon sensors and adhesives	0.612	10.9	44
Baseboard and BeO facings	0.194	6.7	27
ASIC's and adhesives	0.063	1.0	4
Cu/Polyimide/CC hybrid	0.221	4.7	19
Surface mount components	0.076	1.6	6
Total	1.17	24.9	100

Hybrid area per module roughly $\times 2$ at HL-LHC: much higher R/O granularity

Stave: Hybrids glued to Sensors glued to Bus Tape glued to Cooling Substrate

Interlock/DCS<

The ATLAS Pixel Detector

Three barrel layers:

- R= 5 cm (B-Layer), 9 cm (Layer-1), 12 cm (Layer-2)
- modules tilted by 20° in the Rø plane to overcompensate the Lorentz angle.

Two endcaps:

- three disks each
- 48 modules/disk
- Three precise measurement points up to $|\eta|$ <2.5:
 - $R\Phi$ resolution:10 μ m
 - η (R or z) resolution: 115 μ m
- 1456 barrel modules and 288 forward modules, for a total of 80 million channels and a sensitive area of 1.7 m².
 - Environmental temperature about -10 °C
 - 2 T solenoidal magnetic field.

Module Overview

Sensor

- 47232 n-on-n pixels with moderated p-spray insulation
- 250 μ m thickness
- 50 μm (RΦ) × 400 μm (η)
- 328 rows $(x_{local}) \times 144$ columns (y_{local})
- 16 FE chips
 - bump bonded to sensor

Flex Hybrid

- passive components
- Module Controller Chip to perform distribution of commands and event building.

Radiation-hard design:

- Dose >500 Gy
- NIEL >10¹⁵ n_{eq} /cm² fluence

ATLAS Silicon Strip Detectors

4 barrels (2112 modules) and 2×9 disc end-caps (1976 modules)

61m² of silicon micro-strip detectors ~20,000 separate 6cm×6cm sensors

ATLAS

Current SCT ATLAS Module Designs

ATLAS Tracker Based on Barrel and Disc Supports

Effectively two styles of double-sided modules (2×6cm long) each sensor ~6cm wide (768 strips of 80µm pitch per side)

Barrel Modules (Hybrid bridge above sensors) Forward Modules (Hybrid at module end)

60

Future Upgrade Planning

Phase-II Upgrade (LS3) Starts End 2022

Parameter	25ns
Nb	2.2E+11
n _b	2808
N _{tot}	6.2E+14
beam current [A]	1.11
x-ing angle [µrad]	590
beam separation [\sigma]	12.5
β' [m]	0.15
ε, [μm]	2.50
ε _L [eVs]	2.51
energy spread	1.20E-04
bunch length [m]	7.50E-02
IBS horizontal [h]	18.5
IBS longitudinal [h]	20.4
Piwinski parameter	3.12
Reduction factor 'R1*H1' at full crossing angle (no crabbing)	0.306
Reduction factor 'H0' at zero crossing angle (full crabbing)	0.905
beam-beam / IP without Crab Cavity	3.3E-03
beam-beam / IP with Crab cavity	1.1E-02
Peak Luminosity without levelling [cm ⁻² s ⁻¹]	7.4E+34
Virtual Luminosity: Lpeak*H0/R1/H1 [cm ⁻² s ⁻¹]	21.9E+34
Events / crossing without levelling	210
Levelled Luminosity [cm ⁻² s ⁻¹]	5E+34
Events / crossing (with leveling for HL-LHC)	140
Leveling time [h] (assuming no emittance growth)	9.0

(https://indico.cern.ch/conferenceDisplay.py?ovw=True&confId=257368)

Radiation dose in the present triplet (300 fb⁻¹) L. Bottura

F. Cerutti, et al., WP10: Energy Deposition and Radiation Damage in Triplet Magnets, April 2013 https://indico.fnal.gov/conferenceDisplay.py?confId=6164

Radiation dose in the present triplet (300 fb⁻¹) L. Bottura

F. Cerutti, et al., WP10: Energy Deposition and Radiation Damage in Triplet Magnets, April 2013 https://indico.fnal.gov/conferenceDisplay.py?confId=6164

RLIUP Summary on LHC Inner Triplets

L. Bottura <u>https://indico.cern.ch/conferenceDisplay.py?ovw=True&confId=260492</u>

- Expected dose by LS3 (300 fb⁻¹) with 50 % uncertainty⁽³⁾
 - Range of 27 [18...40] MGy in the Q2
 - Range of 20 [13...30] MGy in the MCBX
- Bonding strength (shear) of epoxies is strongly degraded (80 %) above 20 MGy
- Fracture strength of insulating materials degrades by about 50 % in the range of 20 MGy (G11) to 50 MGy (epoxies, kapton)
- Insulations (polyimide) become brittle above 50 MGy
- Triplet magnets may experience mechanicallyinduced insulation failure in the range of 300 fb⁻¹ (LS3 ± 1 year)
 - Premature quenches (cracks in end spacers)
 - Insulation degradation (monitor on line⁽⁴⁾)
 - Mechanical failure (nested coils in MCBX)

HL-LHC matrix: equipment, time, cost

LS2 - 1 y (14 months access)		LS3 - 2 y (2	26 months				
	F	PIC	US1	US2	Cost (MCHF)		In kind
	LS2	LS3	LS3	LS3		i	in part
P4 new cryoplant	Y				15		
H SC link P7	Y				5		
IR (IT,D1, TAS)	%	Y			210	•	YES
P1-P5 cryoplant	%	Y			75		
SC link (EPC&DFBX on surface)	%	Y			40		
Collimators IR		Y			10		
Collimators MoGr	%	Y			15		
Collimators for INJ &TCLA Q4/Q5)		Y			5		
DS cryocoll.(11T) P2	Y				20	395	
LRBB comp.wires			Y		10		
DS cryocoll.(11T) P7			Y		25		
DS cryocoll (11 T) P1-P5			Y		40		
SC link (EPC&DFB on surface) for MS			Y		20	95	
MS new layout (P1-P5) and Q5 in P6				Y	30	•	YES
Machine & Magnet QPS (Availability)				Y	25		
CC cavity P1-P5				Y	95		YES
SCRF 2nd Harmonic				Y			
Crystal Coll				Υ?		•	YES ?
Halo control (e-lens)				Υ?		•	YES
High Band Feedback System				Υ?		150	
Studies					10		
Other systems (Studies, Vacuum,							
Diagnostics, Remote handling					30		
Infrastructure, Logistics,							
Integration,Installation HWC					130	170	
Total					810	810	
		L. Ros	si				

65

Conclusions

- The upgrade is robust for 250 (300) fb⁻¹/y
 - Means to maintain or increase availability are under study
- All hardware is more robust for 3000 fb⁻¹ than it is today for 300 fb⁻¹
- Design Study finished by 2015 with the TDR
- Margins are there and once established and proved:
 - Possible to decrease pile-up density and/or increase to 350 fb⁻¹ (7·10³⁴ of L_{level}) thanks **to crab kiss (CC in II &** \perp **planes) and** β *** of 10 cm (large aperture IT & ATS)**
 - Increase data collection to > 4000 fb⁻¹??

Interface with Accelerator

In the context of the 3000fb⁻¹ by "around 2030", given that levelling at 5×10³⁴ cm⁻²s⁻¹ is based on an effective luminosity of 2×10³⁵ cm⁻²s⁻¹, this raises the question of the ultimate acceptable pile-up (average # collisions each 25ns)

z[m]

0.2

- The "crab-kissing" scheme offers an extended interaction region in z with lower² pile-up density (better vertex finding)
- The question arises for mean pile-up, <µ>, = 140 (5×10³⁴ cm⁻²s⁻¹, 25ns); if the vertex density could drop from 1.3/mm to 0.7/mm could <µ> be even higher?

- New Triplets at Interaction Region will have twice present aperture
 - Requires modification of absorbers in the interaction region
 - appears compatible with small radius beam pipe
 - highly desirable to anticipate work in LS2 (lower activation - time gained for LS3)
- Beam loss risks (for new crab cavities and experiments)
 - Appear manageable from preliminary studies –
 - More (common) work needed

ATLAS PHASE II upgrade (LS3)

		it will hannen	it might									
		it will happen	happen	2015	2016	2017	2018	2019	2020	2021	2022	total
		[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]
1	New Inner Detector	131.500	26.000	2.400	5.600	35.660	32.460	29.160	15.360	10.860	0.000	131.500
2	LAr upgrades	32.124	15.096	0.547	3.170	1.015	2.003	4.517	14.379	6.494	0.000	32.124
3	Tiles upgrades	7.483	2.517	0.000	0.000	0.000	1.122	1.629	4.070	0.602	0.060	7.483
4	Muon spectrometer upgrades	19.632	0.500	0.100	0.275	0.675	3.791	5.041	6.750	2.800	0.200	19.632
5	TDAQ upgrades	23.315	0.900	0.000	0.075	0.315	1.565	2.085	9.805	4.350	5.120	23.315
6	Infrastructure items	16.280	0.000	0.000	0.100	0.400	0.600	2.850	4.100	4.880	3.350	16.280
	TOTAL	230.334	45.013	3.047	9.220	38.065	41.541	45.282	54.464	29.986	8.730	230.334

New ATLAS PHASE II upgrade (LS3)

		it will hannen	it might												
		ie win nappen	happen	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	total
		[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]
1	New Inner Detector	131.500	26.000	0.000	5.600	14.950	26.650	28.250	24.450	15.500	12.000	4.100	0.000	0.000	131.500
2	LAr upgrades	32.124	15.096	0.000	0.584	2.873	2.383	4.231	7.717	8.547	5.790	0.000	0.000	0.000	32.124
3	Tiles upgrades	7.483	2.517	0.000	0.000	0.000	0.000	1.122	1.629	4.070	0.602	0.060	0.000	0.000	7.483
4	Muon spectrometer upgrades	19.632	0.500	0.000	0.100	0.275	0.675	3.791	5.041	6.750	2.800	0.200	0.000	0.000	19.632
5	TDAQ upgrades	23.315	0.900	0.000	0.000	0.000	0.000	0.500	2.020	4.820	7.005	4.650	4.320	0.000	23.315
6	Infrastructure items	16.280	0.000	0.000	0.000	0.100	0.400	0.600	2.850	4.100	4.880	3.350	0.000	0.000	16.280
	TOTAL	230.334	45.013	0.000	6.284	18.198	30.108	38.494	43.707	43.787	33.077	12.360	4.320	0.000	230.334

New ATLAS PHASE II upgrade (LS3)

		it will happen	it might													
			nappen	2015	2016	5 2017	2018	2019	2020	2021	2022	2023	2024	2025	total	
		[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	4
1	New Inner Detector	131.500	26.000	0.000	5.600	14.950	26.650	28.250	24.450	15.500	12.000	4.100	0.000	0.000	131.500	See new sheet 1-ID for details of new profile provided by Steve and Craig
2	LAr upgrades	32.124	15.096	0.000	0.584	2.873	2.383	4.231	7.717	8.547	5.790	0.000	0.000	0.000	32.124	See new sheet (2-LAr) for details of new profile provided by Arno (new version of 16/3/14)
3	Tiles upgrades	7.483	2.517	0.000	0.000	0.000	0.000	1.122	1.629	4.070	0.602	0.060	0.000	0.000	7.483	Sheet 3-Tiles globally moved by one year after consultation with Irene and Ana
4	Muon spectrometer upgrades	19.632	0.500	0.000	0.100	0.275	0.675	3.791	5.041	6.750	2.800	0.200	0.000	0.000	19.632	Sheet 4-Muon globally moved by one year after consultation with Christoph and Ludo
5	TDAQ upgrades	23.315	0.900	0.000	0.000	0.000	0.000	0.500	2.020	4.820	7.005	4.650	4.320	0.000	23.315	See new sheet 5-TDAQ for details of new profile provided by David
6	Infrastructure items	16.280	0.000	0.000	0.000	0.100	0.400	0.600	2.850	4.100	4.880	3.350	0.000	0.000	16.280	Sheet 6-IN globally moved by one year.
																-
	TOTAL	230.334	45.013	0.000	6.284	18.198	30.108	38.494	43.707	43.787	33.077	12.360	4.320	0.000	230.334	

ATLAS PHASE II upgrade (LS3)

		it will happen	it might happen	2015	2016	2017	2018	2019	2020	2021	2022	total
		[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]	[MCHF]
1	New Inner Detector	131.500	26.000	2.400	5.600	35.660	32.460	29.160	15.360	10.860	0.000	131.500
2	LAr upgrades	32.124	15.096	0.547	3.170	1.015	2.003	4.517	14.379	6.494	0.000	32.124
3	Tiles upgrades	7.483	2.517	0.000	0.000	0.000	1.122	1.629	4.070	0.602	0.060	7.483
4	Muon spectrometer upgrades	19.632	0.500	0.100	0.275	0.675	3.791	5.041	6.750	2.800	0.200	19.632
5	TDAQ upgrades	23.315	0.900	0.000	0.075	0.315	1.565	2.085	9.805	4.350	5.120	23.315
6	Infrastructure items	16.280	0.000	0.000	0.100	0.400	0.600	2.850	4.100	4.880	3.350	16.280
	TOTAL	230.334	45.013	3.047	9.220	38.065	41.541	45.282	54.464	29.986	8.730	230.334

70

Conclusions and plans

- The different alternatives and possibilities to keep or upgrade **all the parts** of the system being evaluated
 - First version of each component ready to be tested <u>https://indico.cern.ch/event/311205/</u>
- Still more than 8 years for the installation but... some milestones coming really soon

Short term plans

- Expert days next week at CERN to test the readout of one minidrawer
- Design review in May
- Installation of one demonstrator in P1 in August

Long term

- 2015/2016 Test beams, performance studies and possible installation of more units.
- 2020 Final review of the the demonstrator LS2
- 2021 Components production and set up the FE assembly
- 2023 Installation of new electronics

Computing and Software

- Resources needed for computing at HL-LHC are large but not unprecedented.
 - However, depending on technology assumptions, flat resources can only provide a factor of 2 to 10 times less CPU power than needed
 - Cloud federation may be a way to build the next Grid
 - Possible usage of specialized track processing (eg GPUs as used by ALICE HLT)
 - Multi-core processors will need major software developments to minimize computing demands
 - The use of more specialized hardware to optimize overall costs implies the need for frameworks able to seamlessly adapt and use much more heterogeneous computing resources
 - CERN WLCG provides a possible framework for development of future solutions
 - All LHC experiments could benefit from better coordinated efforts to develop new programming techniques

Virtualization is the key technology behind the Cloud
CMS: "Long-Barrel" Double-Stack Concept

• Layout optimized for L1 track finding. Geometry helps to keep problem "local"

• Within double-stack, each lower module is combined with two upper modules to form "Tracklets"

• Tracklets in each "super-layer" are extrapolated to the other two super-layers

CMS: Phase-II Requirements and Guidelines

Radiation hardness

- ⊙ Ultimate integrated luminosity considered ~ 3000 fb⁻¹
 - ★ To be compared with original ~ 500 fb⁻¹
- Resolve up to ~200 collisions per BX, with few % occupancy
 - ★ Higher granularity

Strip-Strip Module

Pixel-Strip Module

- Improve tracking performance
 - Improve performance @ low p_T, reduce particle interaction rates
 - Reduce material in the tracking volume
 - Improve performance @ high p_T
 - ★ Reduce average pitch

> Tracker input to Level-1 trigger

- μ, e and jet rates would become unacceptably large at high luminosity
 - **★** Even considering "phase-1" trigger upgrades
 - * Performance of selection algorithms degrades with increasing pile-up
- Add tracking information at Level-1
 - * Move part of HLT reconstruction into Level-1!
- Objective:
 - ★ Reconstruct "all" tracks above 2 2.5 GeV
 - ★ Identify the origin along the beam axis with ~ 1 mm precision