LHCb Trigger and Online TDR Online section

Niko Neufeld LHCC Detector Upgrade Review, June 3rd 2014

LHCb Online & Trigger TDR Online section

9 sections

- System design
- Long distance cabling
- Readout board
- Timing and fast control
- Event building
- Event filter farm
- Experiment control system
- Infrastructure
- Project Organisation

Readout System

Recap - requirements

- Event rate 40 MHz event building at bunch-crossing rate
- Mean nominal event size 100 kBytes
- Readout board bandwidth up to 100 Gbits/s
- Supports full software trigger (HLT and LLT)
- Uniform Experiment Control System (ECS) for control, monitoring and configuration of all aspects of the experiment
- Delivery of synchronous and fast commands and clock: the Timing and Fast Control (TFC)
- Can house up to 4000 CPU nodes (i.e. power-cooling and rack-space for 4000 dual-xeon servers)

and of course the Online system should...

- ...allow operation by a minimal crew (2 shifters supported by on-call experts)
- ...be scalable, reliable, maintainable and affordable

Current and future DAQ

	LHCb Run1	LHCb Run 3
Max. inst. luminosity	4 x 10^32	2 x 10^33
Event-size (mean – zero-suppressed) [kB]	~ 60 (L0 accepted)	~ 100
Event-building rate [MHz]	1	40
# read-out boards	313	400 - 500
link speed from detector [Gbit/s]	1.2	4.5
output data-rate / read-out board [Gbit/s]	4	100
# detector-links / readout-board	up to 24	up to 48
# farm-nodes	1500	1000 - 4000
# links 100 Gbit/s (from event-builder PCs)	n/a	400 - 500
final output rate to tape [kHz]	5	20
final bandwidth to tape [MB/s]	300	2000

Cost optimisation

- ECS and TFC costs depend mostly on the number of detector components
- Event-filter farm cost depends on Moore's law and our capability (and imagination!) to exploit existing and emerging technologies:
 - multi-cores, non-x86, novel memory technologies etc...
- DAQ cost is driven by
 - number and type of interconnects
 - shorter \rightarrow cheaper
 - faster \rightarrow cheaper per unit of data transported
 - price of switching technology
 - telecom (feature-rich and expensive) vs data-centre (high-volume and inexpensive)

Long-distance optical fibres

- Most compact system achieved by locating all Online components in a single location
- Power, space and cooling constraints allow such an arrangement only on the surface: containerized datacentre
- Versatile links connecting detector to readout-boards need to cover 300 m

Long distance versatile link tests

- Various optical fibres tested show good optical power margin and very low bit error rates
- For critical ECS and TFC signals Forward Error Correction (standard option in GBT) gives additional margin
- On DAQ links expect < 0.25 bit errors / day / link in 24/7 operation

Receive OMA [dBm]

The unique custom board: PCIe40

- Up to 48 bi-directional optical I/Os (GBT)
- Up to 100 Gbit/s I/O to the PC
- PCIe format removes need for external high-speed optical links
- Universal building block for DAQ, ECS and TFC

Timing and Fast Control

Main elements remain:

- centralized flow-control "throttle"
- support for eventmanagement
- distribution of all fast, synchronous commands
- interface to relevant LHC data
- Technology upgraded from TTC to GBT
- Hardware platform is the PCIe40 with custom firmware

Event-builder PC performance

- Data-centre technology relies on the enormous I/O and memory performance of modern server PCs
- Hardware assisted networking leaves most of CPU performance available for software trigger, estimated to correspond to 2 ms / event in 2020

Readout network with data-centre switching

- Cost of fat-core LAN based on 10 and 40G optical links
- Cost of datacentre LAN based on InfiniBand and direct attach cables

Event-building rate [MHz]

Readout Architecture

Event Filter Farm

- Scalable architecture, resources can be added on the fly (also during physics) as necessary
- Can accommodate any technology which can be attached to a local area network
- Will be optimized for running the software triggers → less costly than general purpose facility
- Containerized data-centre allows to decide on optimal structure (mechanics, powering, etc... as late as possible)
- Mitigate against slippage of "Moore's law" by vigorous R&D to optimally use new and emerging technologies
- 1000 nodes of the assumed 2020 type allow 13 ms for the HLT

Event-filter farm

CPU performance growth

Experiment Control System

- One uniform system comprising Run Control and Detector Control System
- Built around WinCC OA and components provided by the Joint Controls Project (JCOP), emphasis on re-use, userfriendliness and automation
- Very successful only obvious, evolutionary changes foreseen: new operating systems, new hardware platofrms:
 - Harmonisation and modernisation of front-end control: old SPECS and CAN protocols will be replaced by GBT

	TFC Cuntre	I TEL	Lin	U	ics.	Eing		Pile: D			-2						Run D	8
	Sub-Detecto			Laure -						-								
- CAR	MILIADA -	Section.				and the local division of							Townson,				And address of	
I CONTRACT									10	Thipper 4		ponente						
- Dr.	ECAL S	MAL.	3	ALC: NO.	-	Add date	5			1104	9	SCR.0	ALC: NOT	-	TARK:	4	1213	8
	Manangan Di Felo 2013 10 Di Felo 2013 10	193.47 - Lin	384	Later A.C. The												•		
en de Comme	21-1-40-2012-01			uting arts		APRIL 81.5										1	Choi	

The Experiment Control System

Infrastructure

- Infrastructure is a catch-all for ECS- and storagenetworks (dedicated local area networks), IT infrastructure, storage, control-room equipment etc...
- Technically and at least in the Online also financially – there is no problem to store 20, 50 or 100 kHz
 - a modern hard-disk can store about 150 MB/s → in principle 100 kHz require only 66 disks in parallel

Project Organisation

- Long distance versatile link: CERN
- Readout board: CPPM, Bologna
- Firmware: LAPP, CPPM, Bologna, CERN
- Event-builder: Bologna, CERN
- (central) ECS and TFC, storage, online infrastructure: CERN

Schedule

- Assume start of data-taking in 2020
 - System for SD-tests ready whenever needed \rightarrow minimal investment
- 2013 16: technology following (PC and network)
- 2014 PCIe40 design and prototyping
- 9 2015 -16
 - PCIe40 Pre-series (6 months), followed by series production (18 monhts)
 - Large scale network tests
- 2017: tender preparations
- 2018: Acquisition of minimal system (full detector connectivity)
 - Acquisition of modular data-center
- 2019: Acquisition and Commissioning of full system
 - starting with network
 - farm as needed
- 2020: ready for data-taking

Summary

- The new LHCb Online system preserves the qualities of the existing system:
 - emphasis on simplicity ,COTS, architecture-centred design, common solutions
 - uniform experiment control
 - common solutions and standards: JCOP, Versatile Link, ...
- The new LHCb Online system enables trigger-free read-out with full event-building at bunch-crossing rate
- A single custom made-board for both DAQ and ECS
- Unprecedented DAQ performance is cost-effectively achieved by
 - minimizing distances between online components
 - exploiting mass-market technologies (PCs, data-centre networks) driven by big-data applications

More material

Event-size

- The nominal event-size is 100 kB
- For about 8800 versatile links in wide-mode (4.5 Gbit/s) and 30 MHz non-empty crossings this corresponds to a link load of about 80%
 - Empty crossing-events should significantly smaller
- From occupancy in Monte Carlo one gets a slightly higher but compatible number (within 10%), however encoding is not yet optimised (overheads from protocol headers etc...)
- These numbers do not take into account reduction due to removal of duplicate numbers before event-building or final-storage (e.g. BCID)
- We think that 100 kB is a reasonably safe assumption: note that the theoretical maximum, assuming no empty crossings is 131 kB (@ 30 MHz).
- Event-building network is dimensioned for this worst case (+ a few % for DAQ protocol overheads)

Event-builder data-flow: external

Event-builder data-flow: internal

R&D

Reviewers recommend to do intense R&D not only on many-cores but also on

- vectorization (data-parallelism)
- memory-bandwidth optimisation
- non-x86 CPU architectures (POWER, ARM)

Country	Institute(s)
Germany	TU Dortmund
Italy	University and INFN Padova
Netherlands	NIKHEF, University of Groningen
Spain	University of Barcelona (with associate La Salle, Universitat Ramon Llull)

