LHCC June 03, 2014 CERN

Introduction to the Trigger & Online Upgrade TDR

R. Le Gac

CPPM, CNRS/IN2P3

The LOI (March 2011)

- Instantaneous luminosity of 1×10³³ cm⁻²s⁻¹
- Expect to gain a factor 2 on the trigger efficiency for hadronic final states by removing the hardware level (L0).
- Keep the L0 as a safety belt, to regulate the rate at the input of the EFF farm, and, rename it LLT.

HLT parameters:

- Input rate 5-10 MHz,
- Algorithms very similar to those of Run 1.
- Processing time of ~20 ms
- Output rate 20 kHz

EFF size	5×2011	10×2011
LLT-rate (MHz)	5.1	10.5
HLT1-rate (kHz)	270	570
HLT2-rate (kHz)	16	26
Total signal efficiency		
$B_s \to \phi \phi$	0.29	0.50
$B^0 \to K^* \mu \mu$	0.75	0.85
$B_s \to \phi \gamma$	0.43	0.53

The Framework TDR (May 2012)

- Baseline luminosity at 1×10³³ cm⁻²s⁻¹. But, detectors which need replacement will be designed such that they can sustain a luminosity of 2×10³³ cm⁻²s⁻¹.
- ► Total integrated luminosity of 50 fb⁻¹ in less than 10 years.
- Common readout board for DAQ, TFC, ECS and LLT.
- Event builder similar to the one used in Run 1 but with a larger bandwidth.
- The EFF farm input rate is 10 MHz.

Trigger designs

- ► End 2012, the luminosity of 2×10³³cm⁻²s⁻¹ became the baseline.
- Three designs were studied in order to establish the feasibility of the trigger running in the upgrade condition:
 - Pure software HLT
 - HLT assisted with a co-processor, TPU, finding upstream tracks
 - Low Level Trigger

An additional difficulty in designing the upgrade trigger was that several options were proposed for the tracking system, each with different characteristics.

Tracking system

- Jun. 2013 + Jan. 2014, the collaboration selects the detectors technologies for the tracking: VELO pixel, SciFi and UT.
 - The VELO+SciFi allow very fast tracking algorithm
 - The VELO+UT association reduced the processing time of the tracking sequence by a factor 3 [LHCb_TDR-015].

Bidirectional event builder

- February 2014, the bidirectional event builder with the readout electronics located at the surface is selected as the baseline.
 - This choice is endorsed by the review committee.
 - Event building at 30 MHz day one.
 - Open the road for the LLT implementation in software.

Full software trigger

- The trigger studies show that all presented designs are technically feasible at the upgrade conditions with good efficiency. They also show that the trigger can be implemented in different ways.
- March 2014, the full software trigger is selected as the baseline.
 - Choice endorsed by the review committee.
 - Process 30 MHz inelastic collisions day one.
 - Very flexible
- The Trigger & Online TDR is based on the documents prepared for the Online and Trigger reviews as well as on the comments and suggestions collected during that process.

Outline of the TDR

- 1. Introduction
- 2. Requirements
- 3. Online (28 p.)
 - 3.1 System design
 - 3.2 Long distance cabling
 - 3.3 Readout board
 - 3.4 Timing and fast control
 - 3.5 Event building
 - 3.6 Event filter farm
 - 3.7 ECS
 - 3.8 Infrastructure
 - 3.9 Project Organization

4. Full Software Trigger (33 p.)

- 4.1 Event anatomy
- 4.2 Trigger sequence
- 4.3 Global event cuts
- 4.4 LLT algorithms
- 4.5 Tracking reconstruction + PID
- 4.6 Trigger selections + efficiencies
- 4.7 Robustness
- 4.8 Project Organization