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!

A bit of history!
Liquid drop model (1929)

• The liquid is incompressible - the nucleus has low 
compressibility due to its almost cte internal density 

• Nuclei present well defined surface!

• Radius vary with the number of nucleons such as 

!

• The nuclear force saturates and it is isospin 
independent

R = R0A
1/3
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A bit of history
Semi-empirical mass formula - Bethe and Weizsäcker - 1935

m(Z,A) = Zm(1H) +Nmn �B(Z,A)/c2

B(Z,A) = avA� asA
2
3 � ace

2Z(Z � 1)
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av = 15, 68 MeV, as = 18, 56 MeV, ac ⇥ e2 = 0, 72 MeV, ai = 18, 1 MeV

� = ±34 A�3/4, 0 MeV � even� even , odd� odd , even� odd nuclei

   Many other possible parameter sets are possible



Although very naive, it works well even to 
explain fission - Coulomb X surface terms



Chemical elements in the Universe

H  - 71%;  He 27%; C - Ne - 1.8%; Ne - Ti - 0.2 %!
Fe - 0.02 %;  A > 60 - 0.0001 %!



Life and death of a star - Hertzspring & Russel 
Diagram



!
When a star burns all its fuel, it may 

become a black hole or a neutron star  
(M > 8 Msun) or a white dwarf!

!
!
!

Nuclear physics (hadronic) models can 
explain: 

!
- the life of the stars (fusion reactions) 
- some of the compact objects (NS) 

!



                      QCD Phase Diagram - what parts can we explain? 	
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Existing models

• Parameter dependent nuclear models should satisfy 
some nuclear bulk properties: 

• Saturation density, binding energy , symmetry energy 
(and its derivatives), (in)compressibility 

• Many parameters lead to many different models that 
satisfy them, both non-relativistic (Skyrme-type) and 
relativistic ones. 

• How to choose? 



!

What happens when we move to higher densities? 
What about finite temperature?

SHF$

RMF$

Nuclear$MaUer$

Incompressibility$K�





              Constraints can be obtained from experimental data:!
!
1) isoscalar giant monopole resonances (GMR), isovector giant dipole 
resonances (GDR) :                                  incompressibility!
!
2) heavy ion collisions, pygmy dipole resonances, isobaric analog states, GMR, 
GDR :                                        symmetry energy and its slope!
!
3) neutron skin thickness, isospin diffusion calculations, GMR :!
volume part of the isospin incompressibility!
!
!
240 non-relativistic Skyrme models were assessed, in describing nuclear 
matter up to about 3 times nuclear saturation density. 16 were approved - 
Phys. Rev. C 85, 035201 (2012)!
!
263 Relativistic mean-field (RMF) models were also tested in a comparable 
approach. 35 were approved - Phys. Rev. C 90, 055203 (2014)



Common problems of Skyrme models:!
!

- Many EoS derived with non relativistic formalisms are only suited at low 
densities; the EoS becomes acausal (the speed of sound exceeds the speed 
of light at high densities);!

- Non-relativistic models lead to symmetry energies that decrease too much 
beyond 3ρ0; this is a serious deficiency for neutron stars (highly asymmetric 
systems). These deficiencies can be cured with the inclusion of a three-body 
force (too complicated).!

Advantages of relativistic models!
!

- Same relativistic models can be applied to describe the physics involved in:!
                           nuclear matter; stellar matter and heavy-ion reactions!
- They are Lorentz invariant and strictly causal; !
- Anti-particles appear naturally; !
-  Mesonic degrees of freedom are explicitly treated.!
!



Structure and evolution of 
compact stars

• Essential ingredients for astrophysical model calculations 
can be obtained from appropriate Equations of State 
(EoS) of dense matter: 

• static properties of (proto)neutron stars (radius, mass, 
moment of inertial, etc); 

• conditions for nucleosynthesis; 

• dynamical evolution of supernova; 

• energetics, chemical composition, transport 
properties,etc



Structure of a NS



Non-linear models
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Baryon M (MeV) q content J ~⌧ ⌧3 S electric charge

p 938.28 uud 1/2 1/2 +1/2 0 1

n 939.57 udd 1/2 1/2 -1/2 0 0

⇤ 1115.6 uds 1/2 0 0 -1 0

⌃

+
1189.4 uus 1/2 1 +1 -1 +1

⌃

0
1192.5 uds 1/2 1 0 -1 0

⌃

�
1197.3 dds 1/2 1 -1 -1 +1

⌅

0
1314.9 uss 1/2 1/2 +1/2 -2 0

⌅

�
1321.3 dss 1/2 1/2 -1/2 -2 -1

Stellar matter is  subjet to chemical equilibrium and  
charge neutrality conditions:

µ⌃+ = µp = µn � µe, µ⌃0 = µ⌅0 = µ⇤ = µn, µ⌃� = µ⌅� = µn + µe

X

B

qB⇢B +
X

l

ql⇢l = 0



Mean-field approximation (the meson fields are treated as classical fields)	


!
Euler-Lagrange equations → equations of motion (translational and rotational 
invariance) → energy-momentum tensor → EoS	



!

EoS is input to the Tolman-Oppenheimer-Volkoff equations:!
!

!

RMF - usual steps:

dP

dr
= �G
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⇥
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= 4⇡r2"



Tuning the EoS to describe massive stars
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EoS for astrophysical applications
• Detailed aspects are well-known:!

• matter at zero temperature; 

• symmetric nuclear matter, pure neutron matter; 

• low density matter; high density matter, matter in beta-eq 

• inhomogeneous matter (pasta phase) 

• Still to be improved:!

• One EoS that covers the complete parameter space   

• in a single model by combining different approaches

(T, µb)



Structure of a NS



Pasta phase
It is the result of a frustrated system. Normally the short and large 

distance scales related to the nuclear and Coulomb interactions are 
well separated so that nucleons bind into nuclei but at very low 
densities, these length scales are comparable and  a variety of 

complex structures exist: droplet (meatball, 3D), rod (spaghetti, 2D), 
lazagna (slab, 1D), penne (tube, 2D), Swiss cheese (bubble, 3D). 



The pasta phase is the ground state configuration if its free energy  
is lower than the corresponding homogeneous phase. 



Liquid-gas phase transitions
Spinodal instabilities: 

!
thermodynamical - obtained from the determinant of the symmetric 

matrix: 
!
!
!

 dynamical - obtained from the Vlasov equation: 
!
!
!
!
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,/p = -0.4

p,/p =0

FIG. 3. The Maxwell construction for symmetric and asymmet-
ric systems. The construction for symmetric matter (p3/P=O) is
indicated by the segment AB and is the same as for a one-
component system. The construction for asymmetric matter with
p3/p= —0.4 is indicated by the segment CF and shows the quali-
tatively new behavior allowed in a two-component system. The
asymmetry is held constant throughout the phase separation. The
(dashed) binodal line is obtained from similar isotherms at other
values of the asymmetry.

tern with two conserved charges at fixed temperature. Here
p denotes the density of the sum of the charges, and p3
denotes the density of the difference; thus, p3 /p is a measure
of the asymmetry. The dashed curve indicates the intersec-
tion of the two-dimensional binodal surface obtained from
the set of common tangent planes with the plane defined by
T= 10MeV. (The end points of the dashed curve in Fig. 2
correspond to points A and 8 in Fig. 1.) Observe that all
configurations where the free-energy density has a saddle
point are contained within the binodal. Note also that in this
example, the free-energy density is always convex with re-
spect to variations in p3 at fixed p and T.
One feature of the binodal surface is that it may contain

critical points. At the critical points, if they exist, the two
phases can no longer be distinguished by their densities.
Therefore the critical points form a line that divides the bin-
odal surface into different regions describing either a high
density (liquid) or a low density (gas) phase. Finally, we note
that more than two phases can coexist if and only if each pair
of phases form a binodal, and if all these binodals have a
common region of intersection [44].
The binodal surface determines the stability boundaries of

the system, but it remains to show how the system behaves
inside, i.e., how to interpolate within the metastable and un-
stable regions using a Maxwell construction. To explain this
in more detail, we consider an isothermal compression in a
situation where the system can separate into two phases.
We begin with the familiar case of a one-component sys-

tem, as illustrated by symmetric nuclear matter in Fig. 3.
Suppose that during the compression, the system encounters
the binodal at some point A in /tT, p j space. At this point, the
whole volume is occupied by a phase with density p", and a
second phase with density p is about to emerge in an infini-
tesimally small volume. The two phases at A and B are con-
nected by the Gibbs conditions, so that they have equal tem-
peratures, pressures, and chemical potentials. In a one-
component system, B is the point at which the system leaves
the two-phase region; on the (p, p) diagram of Fig. 3, A and

B are connected by a horizontal line, the well-known Max-
well construction. In a multicomponent system, however, as
depicted in the upper portion of Fig. 3, the ratios of the
charges in the emerging phase at D are generally different
from those in the original preparation at C, thus violating the
conservation laws. The system must therefore evolve instead
through configurations that maintain the ratios of the total
charges (the curve CF), and it leaves the instability region at
the point F, which lies together with C on the line of con-
stant ratios Q;/g . At this point, the original phase is
present in infinitesimal quantities with densities ip, ), while
the newly created phase has evolved to point F. The con-
figuration at F is consistent with the conservation laws, and
in general, the pressure and chemical potentials in the coex-
isting phases have changed throughout the transition.
To determine the nature of the system between these ex-

treme values, we must solve

p, = ( 1 —k )p,' + k p", (18)

for given values of p;, with p,
' and p", lying on the binodal

surface. It is important to realize that Eqs. (18) are indeed a
set of n equations in n unknowns, since the p; are specified,
and among the 2n+1 variables p,', p',-', and P, n+1 can be
eliminated by virtue of conditions (14) and (15). Moreover,
these equations yield solutions with qualitatively different
characteristics. If the solutions yield all values of k in the
interval [0,1], so that

p,'=p, for X=0, p", =p, for P =1,
then the system has undergone a phase transition. However,
anticipating the subsequent discussion, there are also solu-
tions with 0(P ~X „(1.In this case the system becomes
unstable to phase separation, but undergoes a retrograde con-
densation: after occupying a maximal volume fraction„, the new phase begins to disappear, and the system
leaves the instability region in the original phase. In either
situation, Eq. (18) provides the desired Maxwell construction
that determines the free energy in the transition region ac-
cording to

B=N +N„=Vp
and the total charge, or equivalently, the third component of
iso spin

N —N 1
I3= =——Vp3.2 2 (2o)

Thus we have

A(T, P, P3) = P(T,. /L, /J. 3)+PP+ P sP3. —(21)

Densities related to other extensive quantities can be com-
puted accordingly.
We close this section by specializing the general formal-

ism to asymmetric nuclear matter, a system of interacting
neutrons, protons, and mesons. Such a system is character-
ized by two conserved charges: the total number of baryons

!
Phase Transitions in multicomponent systems:!

!
Kmax=n+2 phases can coexist in a system with n conserved charges!

(more than 2 phases can coexist if and only if each pair of phases form!
a binodal and if all the binomials have a common region of intersection.!

!

H.Müller and B. Serot, !
Phys. Rev. C 52, 2072 (1995)



• Binodal sections - obtained from the conditions of phase 
coexistence: 

!

!
! !

!

!
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                      QCD Phase Diagram	
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What would happen if matter were subject to 
strong magnetic fields ?



Heavy ion collisions

!

Facility Location Ions Energy
AGS (1986-2000) BNL Au + Au 2.6 - 4.3 GeV
SPS (1986-2003) CERN Pb + Pb 8.6 - 17.2 GeV
RHIC (2000-?) BNL Au + Au 200 GeV
LHC (2009-?) CERN Pb + Pb 5.5 TeV

LHC collisions:!
!

p-p : as much energy as possible in the smallest 
possible volume - aim is to produce elementary 

particles with the possible highest masses (Higgs-like 
particles)  



Pb - Pb : The idea is not to produce new particles, but to 
understand how the ones we know interact with each other by 

investigating the properties of the fluid (very low viscosity) 
produced in the collision 

!
p - Pb : The aim is to obtain benchmarking information 

and to study the partonic distribution inside the incoming ion 
!

Comparing both reactions, one can also identify density 
effects!



    Motivation: why magnetic fields?	



   

!
!

!

!

!

   Magnetars - eB ≃ 0.5m2
π                      m2

π ≃ 3.5 × 1018 G	



       Non-central HIC - eB ≃ 5 − 15m2
π 	



   Early Universe - eB ≃ 30m2
π

eB = 1 GeV2 B = 1.69⇥ 1020G

Heaviside-Lorentz, Gaussian and natural units lead to different conversions!

in natural units:



                      QCD Phase Diagram	
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What would happen if matter were subject to 
strong magnetic fields ?



NJL model
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We would like to understand magnetic field effects: 
!

- at high densities and low temperatures (NS): 
!

- at low densities and high temp. (heavy ion collisions); 
!

- at low densities and low temperatures (pasta phase): 
!

- if the CEP exists, how its location would change 



Pulsares (NS) X Magnetares

B = 1012 G na superf́ıcie B = 1015 G na superf́ıcie



Main NS manifestations:!
!
!

• Pulsars - powered by rotation energy (1900 observed in 
radio-frequency)!
!
!

• Accreting X-Ray Binaries - powered by gravitational energy 
(typical rotation periods 0.0015 - 1000 s)!
!
!

Magnetars don’t fit into these categories! They are normally 
isolated NS whose main power source is the magnetic field.!



There are 2 classes of magnetars (25 confirmed):!
!
!
• Soft gamma-ray repeaters (discovered in 1979 as transient X-ray 

sources and giant flares);!
!
!
• Anomalous X-ray pulsars (identified in 1990 as a class of persistent !
• X-ray with no sign of a binary companion);!
!
!



Magnetars - NLWM

 0

 0.5

 1

 1.5

 2

 2.5

 3

 7  8  9  10  11  12  13  14  15  16

M
/M

0

R (Km)

z=0.23

z=0.35

z=0.12

A, B = 3.1 . 1018G
A, B = 1.0 . 1017G
H, B = 3.1 . 1018G
H, B = 1.0 . 1017G

B makes the EoS  
harder, which 

results in higher 
maximum  
masses



 0.01

 0.1

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

Y
i

n (fm-3)

(b)

p

n

e

µ Y-
R0

Y0

Y+

U-

The kinks are 
related to the 
filling of the 

LL



Particle yields in HIC 
    We model matter as a free gas of baryons and mesons consisting 

of 54 particles (18 baryons, 18 antibaryons and 18 mesons) 
 under the influence of a constant magnetic field. 

!
Heaviside-Lorentz units:

~ = c = 1, ✏0 = µ0 = 1, e =
p
4⇡↵,↵ =

1

137

Gauge:

A

µ = �µ2x1B ! A

0 = 0 and ~

A = (0, x1B, 0)

~r · ~A = 0, ~r⇥ ~

A = Bê3, Dµ = @

µ � i✏q|q|Bx1ê2



Au+Au (0-5%) collision at
p
sNN = 200 A GeV.

B (⇥1019G) 0 0.1 0.5 1 3 5 STAR/RHIC
eB (m2

⇡) 0 0.3 1.5 3 9 15
T (MeV) 140 141 152 165 198 215
µB (MeV) 19 20 21 23 26 29
�2/ndf 14.4 17.7 14.5 11.6 9.4 10.6
µI3 (MeV) -1.42 -1.50 -1.70 -2.01 -2.85 -3.89
µS (MeV) 2.24 2.42 3.29 4.54 7.16 8.64
R (fm) 38.3 37.0 29.7 23.4 14.9 12.09
⇢⇥ 10�3 1.67 1.86 3.60 7.30 29.0 53.0
(fm�3)
⇡�/⇡+ 1.000 1.000 1.000 1.000 1.000 1.000 1.015±0.051
K�/K+ 0.978 0.976 0.968 0.957 0.941 0.936 0.965±0.048
p̄/p 0.770 0.761 0.767 0.766 0.781 0.778 0.769±0.055
K�/⇡� 0.218 0.218 0.215 0.210 0.208 0.212 0.151±0.018
p̄/⇡� 0.034 0.035 0.041 0.047 0.055 0.053 0.082±0.010
K+/⇡+ 0.223 0.223 0.222 0.219 0.221 0.226 0.159±0.019
p/⇡+ 0.044 0.045 0.054 0.061 0.070 0.068 0.108±0.013



CEP - NJL / PNJL

• RKH parametrization / B=0 and strong B!

• Different scenarios : !

!

!

µu = µd = µs

µu = µd, µs = 0

⇢u = ⇢d = ⇢s

� � equilibrium



B=0



Effect of the isospin on the location of the CEP (PNJL)  
the line corresponds to zero isospin 

µu = µd, µs = 0

B=0



Full lines= 1st order transitions at eB=0; two CEPs at low T!
and strong B (pink and blue)



• For matter in beta-equilibrium, the CEP occurs at 
smaller Ts and densities (no B)!

• For very asymmetric matter, no 1st order phase 
transition to a deconfined phase occurs (no B)!

• CEP occurs at very small Ts if eB < 0.1 GeV^2 and a 
complicate structure appears, i.e., more than one CEP!

• Strong Bs can drive the system without a CEP to a 1st 
order phase transition



Final Remarks
Hadron physics is a very rich field, with many aspects!

still to be investigated!
!

Different (T, chemical potential) of the QCD phase diagram!
can be described!

!
In general, it involves multidisciplinary areas !

(thermodynamics, statistical mechanics, astrophysics,…)!
!

Modelling hadronic matter properly remains a challenge





Thank you !


