Or Everything you wanted to know about the Higgs particle ... but were afraid to ask

- Why do we need accelerators and detectors?
- Particle Detectors with examples.
- Standard Model of Particle Physics
- Introduction to the Higgs
- The future

Why do we need Accelerators(1)

• Why can't the lion see the rabbit but it can hear it?

Why do we need Accelerators(2)

- To study an object of size R, need resolution much better than R → wavelength of probe λ < R.
- → Optical microscopes resolution limited ~ µm but we need resolution of ~10⁻¹⁵ m to study quarks.
- Quantum mechanics says λ=h/p (h =Plank's constant, p=momentum).
- → High energy/momentum particles to study structure of matter at smallest scales.

Particle Detectors

- Everybody has examples of particle detectors at home
- Examples are ...

Particle Detectors

- To detect high energy particles we can use ionisation.
- High energy particle knocks electrons out of atoms → electrons and positive ions.
- Detect resulting electrons.

Wire Chambers

Principles of a Gaseous Detector

- charged particle ionizes gas in tube
- ionization (electrons) drifts to central wire
- further ionization near wire as electrons gain energy
- electronic pulse obtained from wire

APPEAL July '14

Scintillation Counters

Example: Silicon Detector

- High energy charged particle knocks out electrons (-ive)
- +ive and –ive charges move in opposite directions because of applied electric field.
- Resulting current measured by electronics.
- This is the principle behind the camera on your phone

ATLAS Si detector barrel @ Oxford

Standard Model Particle Physics

How do we know all these particles exist ?

- Experiments !
- Electron is easy measure e/m
- Quarks confined in hadrons → more difficult.
- How about unstable particles?
 Take Z⁰ as an example t~ 10⁻²⁴ s.

Discovery of Nucleus Experiment

• Fire alpha particles at thin foils and look at angle of scattering.

Tony Weidberg, Oxford University

Discovery of Nucleus Theory

- Rutherford found that most collisions were at small angles but occasionally the α particles would bounce back.
- "it was as if you fired 15" shells at tissue paper and they bounced back and hit you"

Positive charge all inside small nucleus

→ large angle scatters.

Large angle e⁻ scattering event in ZEUS

Structure of the proton

- Proton R ~ 10⁻¹⁵ m → high energy probes e.g. electrons
- Proton appears to be made up of point like constituents: quarks
- Electromagnetic interaction = exchange of virtual photons.

Z⁰ decays

- Reconstruct
 decay products
 e.g. Z→e +e⁻
- Boost to CMS
- Use E=mc²

Origin of Mass

- Consider Feynman's wheelbarrow experiment:
 - Put ball in wheelbarrow, push it forward and stop suddenly.
 - The ball continues to move forward and rolls out.
- Why ???

Origin of Mass(2)

- So classical mechanics doesn't explain origin of mass.
- Quantum theory predicts masses of all particles should be 0 !
- Need to understand quantum vacuum
 - What is left in a bottle after I remove all the molecules?
 - Remember Heisenberg $\Delta E \Delta t > h$
 - Why does this matter?

Quantum Vacuum

- Can measure small changes in atomic energy levels, magnetic moments etc.
 agree with theory.
- Macroscopic example: Casimir force E_{in}

• E_{in} < E_{out} why? Creates inward pressure.

Higgs Vacuum

- Vacuum is lowest energy state of fields
- Average value of Higgs field non-zero.
- Particles interact with this field acquire mass.
- Can we test this theory? Yes we can
- Put enough energy in to create a Higgs boson.

Higgs hunting

- How would we know if we made a Higgs boson?
- Use good old E=mc²
- Measure energies of decay products → reconstruct m_H.

Higgs Hunting

- Look for Higgs decaying to two photons and <u>reconstruct Higgs mass</u> E=mc²
- Evidence for Higgs boson also seen in other decay modes (ZZ and WW).
- How do we know the signal is real and not just a statistical fluctuation?
- Calculate <u>probability</u> of a fluctuation producing a larger signal

APPEAL July '14

Higgs Signal yy

Statistical Evidence

Outlook

- We have definitely discovered a new boson but is it the Standard Model Higgs?
- Measurements of spin=0 suggest it is a Higgs boson but is it SM or exotic?
- Need much more data ...

Q. Why do Particle Physics?

- Answer: because it is interesting !
- fundamental questions of what the Universe is made of and how it interacts.
- Towards a T.O.E.
- Also help to explain how the Universe evolved.
- Dark Matter

Other Benefits of Particle Physics

- Many important applications of technology developed for Particle Physics are used.
- Ion beam accelerators required in semiconductor industry.
- Synchrotron radiation
 - By-product of particle accelerators.
- Accelerators used in hospitals to produce radioisotopes.
- Medical imaging (e.g. PET).
- Safe transformation of nuclear waste.
- World Wide Web invented at CERN (by Oxford APPEAbysics graduate) ony Weidberg, Oxford University

Accelerators

- Use E=mc² What does this mean?
- We know Higgs mass m_H>115 GeV/c²
- Need very high energy particle accelerator:
 - LHC centre of mass proton proton collisions 7 to 8 TeV (upgrade to 14 TeV).
 - 1 TeV = 10¹² eV: 1 eV is energy given to an electron by a 1V battery

Particle Accelerators

- Everybody has a particle accelerator at home.
- It is called a ...

TV = Electron Accelerators

A Particle Accelerator

- the voltage in a T.V. is typically 20kV.
- i.e. the energy of each electron is 20keV.
- LEP diectrons are 50 hillion eV (50 GeV).
- APPEAL July '14 50 Gigar dog-Weidherg.l@xfmddhiveesity

Circular Accelerators

Tony Weidberg, Oxford University

NB 231

July 14

a.

1200 Superconducting Magnets 9T for the LHC

Superconducting RF Cavity

4 Si Barrels Assembled

Detector Challenges

- 10⁹ interactions/second
- Select ~10³ interesting events from background of 10¹⁶
- Makes finding finding a needle in a haytsack look like a piece of cake.

ATLAS Torroid Magnets

