Energy Loss in the Context of the p/d-A Non-Null Control

W. A. Horowitz

University of Cape Town June 5, 2014

With many thanks to William Grunow, Ulrich Heinz, Ben Meiring, Razieh Morad, Chun Shen, and Derek Teaney

What Are We Interested In?

 Discover emergent, manybody physics of **QGP** through consistent theoretical description of experimental data

Long Range Plan, 2008

E&M Particle Physics Well Understood

- Lagrangian known: $\mathcal{L}_{EM} = \bar{\psi} \left(i D m \right) \psi \frac{1}{4} F^2$
- QED Vertex:

• Ex. of Precision QED: g - 2

Gabrielse et al., PRL97 (2006)

 $g/2 = 1.001\,159\,652\,180\,73(28)$ [0.28 ppt]

Hanneke, Fogwell, and Gabrielse, PRL100 (2008)

E&M Many Body Physics

Many body physics less well understood

CERN Heavy Ion Forum

E&M Many Body Physics (cont'd)

http://for538.wmi.badw-muenchen.de//projects/ P4_crystal_growth/index.htm

High T_c Superconductors

6/5/2014

phase-diagram-water.svg

http://ch302.cm.utexas.edu/svg302/

Phase Diagram for Water

QCD Particle Physics

- Lagr. known: $\mathcal{L}_{QCD} = \sum_{j} \bar{\psi}_j \left(i \not D m_j \right) \psi_j \frac{1}{4} \left(F^a \right)^2$
- QCD Vertices:

 Qualitative agreement w/ data

Quantitative QCD Particle Physics

NLO pQCD in pp System ~ factor of 2

And so we boldly go...

Hang on to your seats!

Worth Reviewing Some History

Expect the Unexpected

- Before RHIC turned on

Flow

- Radial:
 - Will (continue to) be a very large effect
 - Essential component to understanding spectra at RHIC.
- Directed:
 - Already small at SPS
 - Almost irrelevant at RHIC
- Elliptic:
 - Zero for truly central events (at any energy)
 - 🗆 Is it
 - A necessary evil for understanding events with nonzero impact parameter?

Or

- An essential tool to our understanding of
 - EoS+(time evolution) of (non-isotropic) initial conditions?

My <u>prejudice</u>:

Effects of elliptic flow will be small at RHIC

B Zajc, RHIC Winter Workshop at LBL (1998)

W.A. Zaje

09-Jan-98

RHIC (Pre-)History

CAARI04

- Modesty to RHIC goals prior to turn on
 - "Create new form of matter": QGP
- Early RHIC results
 - Nearly ideal hydro flow
 - Constituent quark scaling
 - Factor of 5 suppression at high-p_T
 - Null control R_{dA} ~ 1 and (later) $\gamma R_{AA} =>$ final state effect

RHIC Continues

- After several years of RHIC running
 - Created "stronglycoupled fluid": sQGP
 - Based on flow analysis, small extracted η/s
 - pQCD E-loss picture doesn't quite hang together
 - v₂ too large
 - NPE R_{AA} too small

20 - 30 %

0.2

0.1

0

-0.1

Luzum and Romatschke, Phys.Rev.C78:034915,2008

LHC Turns On

- Hydro story still consistent
 - v_n well described by nearly perfect fluid + fluctuating IS

LHC is Hard

- pQCD E-loss makes more sense
 - Constrained by RHIC, LO pQCD predictions strikingly similar to LHC data

Prior to p + A

- Inconsistency btwn strong-coupling picture of hydro & weak-coupling picture of pQCD
 – Perhaps large Q² => pQCD at high-p_T
- Expect p + A to show:
 - Hydro turning off

$$-R_{pA} = 1$$

The Disaster in Pictures

6/5/2014

CERN Heavy Ion Forum

Bozek, IS2013, arXiv:1401.2367

18

It's a Tsunami

Even the Strong Come to Destroy

Option 1: Ignore

Velkovska, CMS Overview, HP13

- Are R_{p/dA} mysteries due to:
 - "Trivial" experimental issue (e.g. lack of baseline)?
 - Maybe for h[±]:
 - Jet R_{pA} unmodified
 - Expect IS^2 in AA, but EW $R_{AA} \sim 1 >> 0.5$

Continue to Ignore

- Are R_{p/dA} mysteries due to:
 (Trivial) Bias?
 - Maybe jet R_{pA}(N_{ch})
 - What about HF?
 - No STAR data yet
 - ALICE: not clear; FF?

Wilkinson for ALICE, 9th High-p_T at LHC Workshop, arXiv:1402.3124 21

We Must Face Reality

- Too much to ignore?
- Are R_{p/dA} mysteries due to:
 - Large, currently uncontrolled, IS effects?
- What about hydro?
 - Are 0-20% p + A collisions really large enough for hydro to work?
 - How big is the system?
 - Big enough for energy loss? High-p_T measurements?
- Must understand p + A before making A + A claims
 - Or p+p...

The Pivot

- Aim was to convince us that p + A => strong coupling
 - I'm not entirely persuaded
- If I were to bet:
 - $-h^{\pm} R_{pA}$ will go away
 - Jet R_{pA} explained by bias induced by mult.
 - e⁻ R_{p/dA} harder: IS? FF not well understood?

Two Common Theoretical Descriptions

- Weak Coupling
 - Assume $\alpha_s << 1$
 - Use pQCD
 - Appears:
 - consistent with high- p_T obs
 - Simultaneous description of: R_{AA}, v₂, light & heavy flavors, RHIC & LHC
 - inconsistent with low- p_T obs
 - Rapid thermalization, η /s

- Strong Coupling
 - Assume $\lambda >> 1$
 - $\lambda = (g^2 N_c)^{\frac{1}{2}}$
 - Use AdS/CFT
 - Appears:
 - consistent with low- p_T obs
 - Rapid thermalization, η /s
 - inconsistent with high- p_T obs
 - Simultaneous description of: R_{AA}, v₂, light & heavy flavors, RHIC & LHC

Look for picture of QGP properties consistent with *all* data

Towards Consistency

- Two alternatives. Seek:
 - Novel weak-coupling physics for low- p_T
 - New strong-coupling physics for high- p_T
- Today follow the latter
 - More correct description for light flavors
 - Include higher order effects for heavy flavors
- NB: higher orders necessary for a quantitatively consistent pQCD explanation of high-p_T

Reminder of AdS Successes I

Rapid Thermalization

Reminder of AdS Successes II

- Bulk Properties
 - Leading order results reproduce well:
 - Energy density, entropy, shear viscosity

Why AdS at High- p_T ?

- Perturbatively, 3 couplings for rad E-loss
 Not known at which scale(s) couplings run
- $T_{QGP} \sim \Lambda_{QCD} \Rightarrow g(2\pi T) \sim 2$
 - Always small scale in problem
 - Perhaps low-Q² plasma physics dominates over high-Q² in E-loss physics?
 - Factorization not proven in AA

"Simple" LO AdS for Light High-p_T

Assume all couplings large

R Morad and WAH, in prep

- Thermalization time very short
 - R_{AA} currently from v. naïve geom model
- In AdS setup, probe & gluon cloud indistinguishable from medium
 - Only makes sense to compare to *jets*, not single particles **CERN Heavy Ion Forum**

"Simple" LO AdS for Heavy High- p_T

Assume all couplings large

Very different from usual pQCD and LPM $dp_T/dt \sim -LT^3 \log(p_T/M_q)$

AdS HQ Compared to Data

Constrained by RHIC, oversuppresses LHC

Missing Physics?

- Lights:
 - Is jet prescription correct?
 - See R Morad poster
 - Are IC reasonable?
 - See B Meiring poster
- Heavies:
 - Within limits of calculation?
 - Higher order corrections?

Improved AdS Jet Prescription?

- All approximations to a full $T^{\mu\nu}$ calc.
- Original jet defined by spatial proximity
- New suggestion: separation by E scale

AdS: No-nucleus Suppression

 Original proposed IC => anomalous vacuum suppression!

Suggests oversuppression artifact of string IC

See B Meiring QM poster for work to more realistic IC

CERN Heavy Ion Forum

AdS: Tantalizing Renormalization

- Can we capture diff. btwn. naïve AdS pp & AA?
 - Define renormalized R_{AdS} = " R_{AA} / R_{pp} "; cf CMS

CERN Heavy Ion Forum

Limits on Heavy Flavor AdS Setup

HQ p_T Limits

Including Fluctuations in AdS HF

$$\frac{dp_i}{dt} = -\eta_D + F_i^L + F_i^T$$
$$\langle F_i^L(t_1)F_j^L(t_2)\rangle = \kappa_L \,\hat{p}_i \hat{p}_j \,g(t_1 - t_2)$$
$$\langle F_i^T(t_1)F_j^T(t_2)\rangle = \kappa_T \left(\delta_{ij} - \hat{p}_i \hat{p}_j\right)g(t_1 - t_2)$$
$$\kappa_T = \pi \sqrt{g^2 N_c} T^3 \sqrt{\gamma}; \qquad \kappa_L = \pi \sqrt{g^2 N_c} T^3 \gamma^{5/2}$$

Gubser, NPB790 (2008)

- Obeys Einstein's relations only at v = 0 ($\kappa_{FD} = \pi T^3 \gamma (g^2 N_c)^{1/2}$)
- Multiplicative Langevin problem!
 - Results depend on time within timestep kicks are evaluated
 - Ito, Stratonovich, Hänggi-Klimontovich
- Non-Markovian:
 - Colored (not white) noise
 - Momentum kicks have a memory

Discretizing Langevin

- Discretizing Riemann Calculus trivial
 - Sum converges regardless of bin widths and x* in bin as n increases
- Ambiguity in Ito Calculus

- Results depend on discretization procedure

Discretization Ambiguity and Einstein

- AdS fluctuations very diff from fluc-diss, which lead to relativistic thermal (Jüttner) distribution
- Huge diff btwn pre-point (not shown), mid-point, and post-point
- AdS fluctuation derivation ignored changes to dispersion rel'n

• Wong-Zakai Theorem:

– As autocorrelation => 0, Langevin => Stratonovich
CERN Heavy Ion Forum

Model Calculations

- Input FONLL c, b production spectra
 - Rapid dropoff in p_T
- Discretized Langevin through VISHNU
 - 2+1D viscous hydro
- FFs to B, D, e
- <u>VERY PRELIMINARY</u>
 - Results converged just last week

Compare to RHIC

- Steeply falling spectrum + fluc => huge growth Data: PHENIX, PRL98 (2007) in p_T in R_{AA} from c
- Speed limit => p_{max} ~ 6 GeV

CERN Heavy Ion Forum

BUT: e⁻ R_{dA} is Enhanced

• Perhaps IS effect: divide by R_{dA}^2

– Multiple curves from varying λ by powers of 2

CERN Heavy Ion Forum

LHC D Mesons 0-20%

Recall drag only
 With fluctuations

- Slightly different from QM (corrected trivial error)
- Again, huge inc. in R_{AA} as p_{T} inc.
- Expect speed limit corrections $p_T \sim 10 15 \text{ GeV}$

LHC B Mesons Largely Unaffected

• Solid: With Fluctuations 6/5/2014 CERN Heavy Ion Forum

What Happens to D / B Ratio?

• Previously

With fluctuations

• Fluctuations ~ $\gamma^{5/2}$ lead to incredibly rapid rise in D / B ratio

Conclusions

- Want consistent picture of QGP, but Expect the Unexpected
 - Shocking p/d + A results over past year(s)
 - Requires resolution (likely from precision data)
- Naïve LO AdS receives large corrections
 - Light flavor setup needs improvement
 - Suggestive early results
 - HF Fluctuations very important
 - Significant reduction in HF suppression
 - Effect appears to be too small at low pT and too large at p_T near speed limit for quantitative comparison
 - Likely also affects wide-angle scattering
- Future AdS work
 - Include colored noise
 - Improve light flavor IC
 - Transition HF to light flavor at speed limit
 - Still better HF/LF setup, a la Ficnar?

What Happens to D / B Ratio?

Previously

6/5/2014

50

LHC D Mesons 0-20% (Old Result)

- Again, huge inc. in R_{AA} as p_T inc.
- Expect speed limit corrections $p_T \sim 10 15 \text{ GeV}$

CERN Heavy Ion Forum

Recent JET Collab Results

Burke et al., arXiv:1312.5003

...we summarize our current results and indicate needed future work by the JET collaboration toward a quantitative mapping of the jet transport parameter ghat over a wider range of jet energy and highest T ... "

Velkovska, HP2013

PHENIX, PRC88 (2013) 2, 024906

The Picture that started it all ...

CAN WE UNDERSTAND INTERACTION OF A PARTON IN MEDIA?....

AdS and HQ

 String drag: qualitative agreement at RHIC

AdS and HQ at LHC

- AdS HQ Drag appears to oversuppress D
- Roughly correct description of current $B \rightarrow J/\psi$

Set Scale for Expectations NLO pQCD in pp System ~ factor of 2

"Fragmentation functions may need to be revisited"

Claim of Generic Bragg Peak

Chesler et al., PRD79 (2009)

 $-\Delta x_{max} \sim (E/\lambda^{1/2}T)^{1/3}/T$

• Different power from usual $\Delta E \sim L^2$ from pQCD

Simple Bragg Model vs. Data

- $P(escape) = \theta(L-L_{therm})$
- Huge uncertainties
- Systematic oversuppression?
 - Warrants further study

Compare to pQCD at RHIC & LHC

• For LHC predictions: change only $\rho_{med} \propto dN_{ch}/d\eta$

New WHDG J/ ψ Comparison to CMS

• WHDG B + B => J/ψ decay

6/5/2014

- Thanks to Andrea Dainese and Zaida Conesa Del Valle

Strongly Coupled HF and p+A

- Measure open HF in p+A
 - Midrapidity: test production
 - Forward: test CNM HF E-loss

Discretization Ambiguity and Einstein

• Ex: momentum space distribution of charm

- AdS fluctuations very diff from fluc-diss, which lead to relativistic thermal (Jüttner) distribution
- Huge diff btwn pre-point and mid-point

LHC D Mesons 0-20%

- Slightly different from QM (corrected trivial error)
- Again, huge inc. in R_{AA} as p_{T} inc.
- Expect speed limit corrections $p_{T} \sim 10-15~GeV$