Stability measurements Rutherford type cables

Small overview of research done from 2005-2009

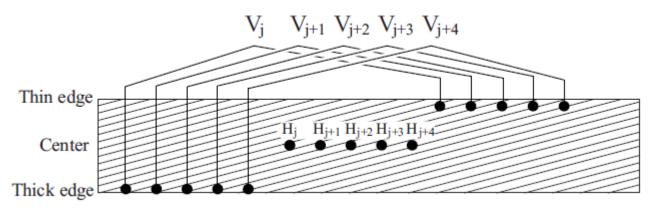
Gerard Willering

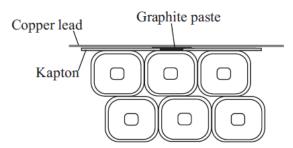
With thanks to Arjan Verweij Herman ten Kate

16-09-2014

Contents

- What was measured
- How was it measured
- Current redistribution effects
- Influence of interstrand contacts
- Influence of helium cooling
- How does this translate to LHC magnets

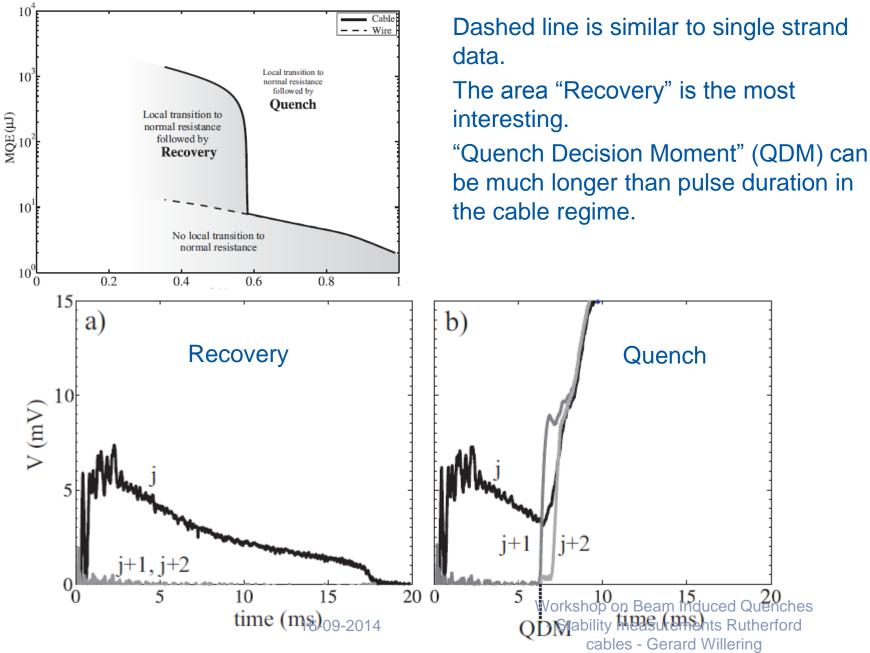

16-09-2014


What was measured

Minimum Quench Energy (MQE)

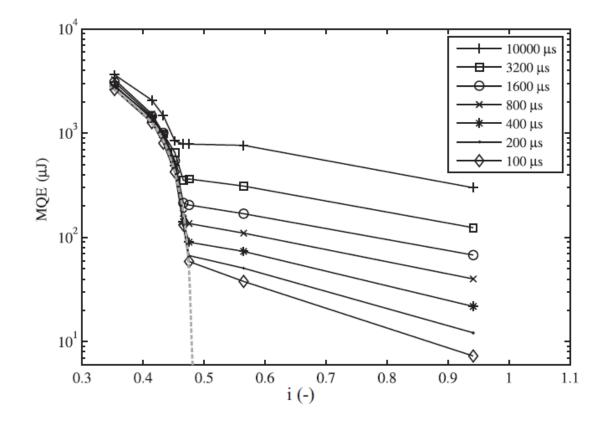
Definition: Minimum energy needed to quench when the energy is deposited in an infinitely small point with a delta pulse.

Real life: Spot heater 0.5 mm diameter, effective pulse duration from 100 µs to 10 ms.


Spot heaters of graphite paste:

16-09-2014

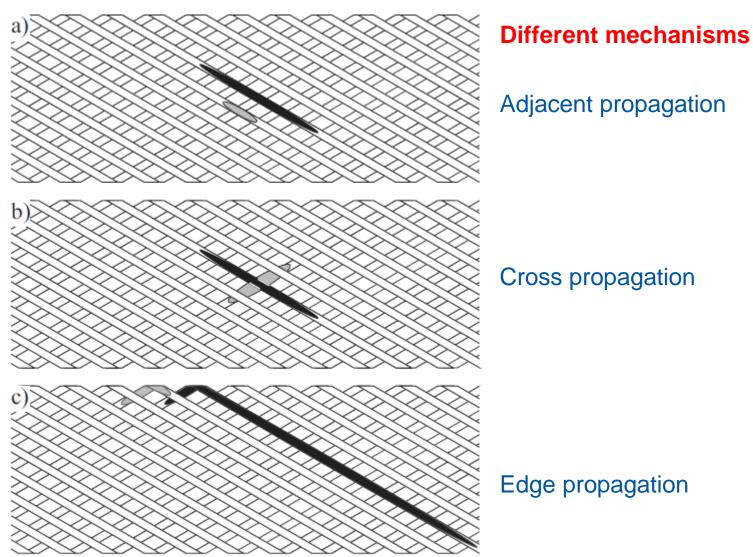
- Very good thermal contact with the cable.
- Heating generated very close to the cable.
- Response time of $< 100 \ \mu s$.
- Are used as voltage taps too.


What was measured

Influence of pulse duration

Measurement range from 100 μs to 10 ms

The "kink" is only slightly depending on the pulse duration, whereas the single strand regime strongly depends on it.

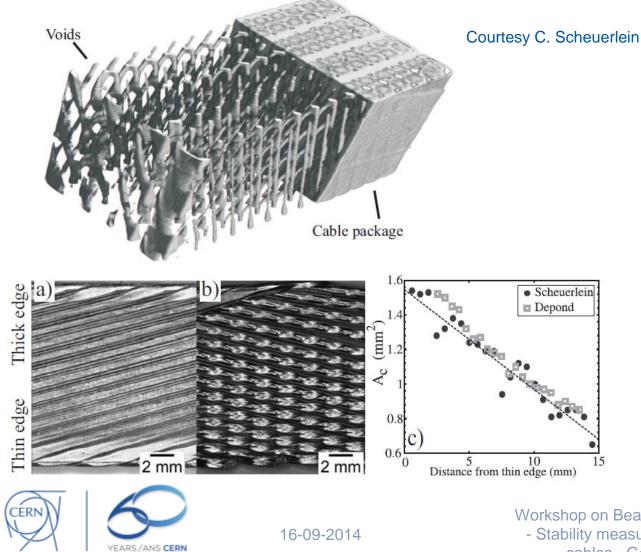


16-09-2014

Workshop on Beam Induced Quenches - Stability measurements Rutherford cables - Gerard Willering

5

Transverse propagation from strand to strand



16-09-2014

Geometry parameters

Tomography of a cable stack was done to have correct helium volume and helium contact as function of the cross section of the cable.

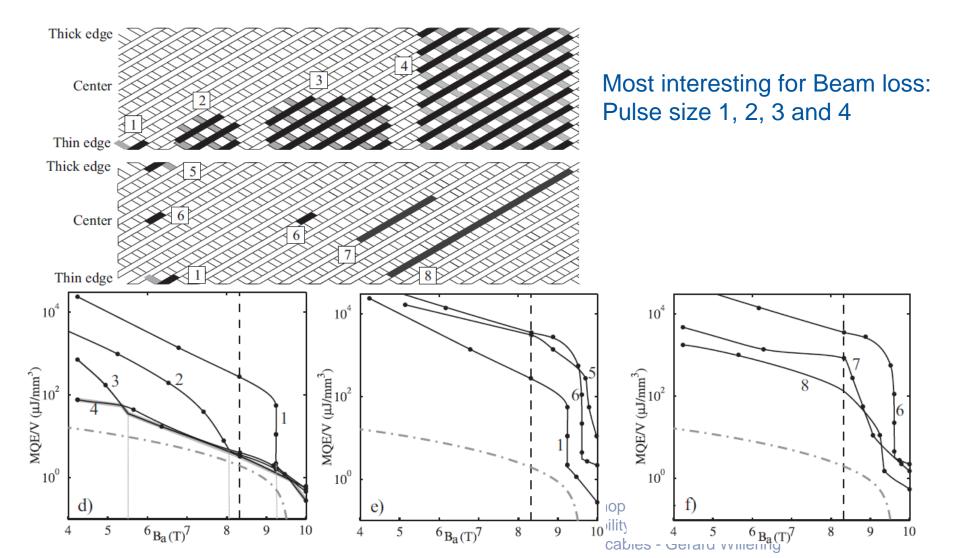
Interstrand contact parameters

Different sample prepared, varying the thermal and electrical interstrand contact resistance.

Sample name	Coating	Core	Impregnation	RRR	$R_a \ (\mu \Omega)$	$R_c \ (\mu \Omega)$
lhc 01 - A	SnAg	No	No	200	150-200**	15-20**
lhc 01 - B	SnAg	No	No	90	20-300**	$2-30^{**}$
lhc 01 - C	Al	No	No	250	$>1000^{**}$	640*
lhc 01 - D	SnAg	No	No	200	150-200**	15 - 20 * *
lhc 01 - E	SnAg	No	Yes	200	150-200**	15 - 20 * *
lhc 01 - F	Soldered	No	No	300	$< 0.1^{**}$	$< 0.1^{**}$
sis 300 dipole - A	Soldered	Yes	No	346	$< 1^{*}$	$> 20000^{**}$
sis 300 dipole - B	AgSn	Yes	No	89	60-70*	$> 20000^{**}$
sis 300 dipole - C	AgSn	Yes	No	245	600-700*	$> 20000^{**}$
sıs 300 dipole - D	AgSn	Yes	No	272	8000-9000*	$> 20000^{**}$

Table 6.1: Properties of the measured samples.

*Measured


**Data determined from literature values.

The whole parameter space has been evaluated either by specific measurements or literature research.

How does this translate to LHC magnets

Using CUDI and having validated all parameters by the experiments and using the field as in the LHC magnet. Varying pulse size, pulse duration 10 μ s, LHC dipole, turn 40.

Summary

- A large set of measurement data is available in the 100 µs to 10 ms range on LHC type cable and can be used for model validation.
 - (some 10 cables measured, various conditions and preparations, some 8000 heat pulses)
- Many parameters of the cable have been investigated, either directly or through literature.

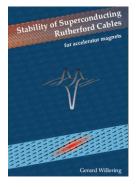
(like geometry, helium volume and contact surface, interstrand electrical and thermal resistance).

- Some calculated curves readily available for the LHC main dipole magnets.
- Most extensive experimental dataset available on LHC type NbTi cables, and a comprehensive set of characteristics of all the parameters that serve as input for calculations.

16-09-2014

Further reading

Stability of Superconducting Strands for Accelerator Magnets


Pierre Bauer

He

H

Thesis "Stability of Superconducting Strands for Accelerator Magnets", P. Bauer, 1996

http://cds.cern.ch/record/492626/files/Thesis-1996-Bauer.pdf

Thesis "Stability of Superconducting Rutherford Cables for Accelerator Magnets", G. Willering, 2009

http://doc.utwente.nl/61331/1/thesis_G_Willering.pdf


Thesis "Thermal Stability of Nb₃Sn Rutherford Cables for Accelerator Magnets", W.M. de Rapper, 2014

http://doc.utwente.nl/90653/1/thesis_W_de_Rapper.pdf

16-09-2014

