Luminosity debris and Inner Triplet BLM

L.S. Esposito, F. Cerutti, A. Lechner, N. Shetty EN-STI-EET

B. Auchmann, O. Picha TE-MPE-PE

BIQ workshop, 15-16 September 2014

Outline

- 2012 BLM data and FLUKA benchmarks
- BLM response and peak power in the Inner Triplet quadrupoles for 6.5 TeV proton beam collisions
- Update of the quench limits for MQXA, MQXB
- Discussion on accidental scenarios
- Proposed strategy for setting IT BLM thresholds

2012 BLM data

- BLM signals alike for IR1/5 and left/right, whilst constant as function of fills
- Difference for P8 due to the absence of the TAS (and presence of spectrometer/compensators)

FLUKA benchmark with BLM data @4 TeV - P1

BLM pattern well reproduced Deviations for the first BLM and the first BLMs after interconnects

IR1 simulation for 6.5 TeV protons

Signal in the BLMs

 $BLMSignal@Quench(E,t) = \frac{BLMResponse(E,t) * QuenchLevel(E,t)}{EnergyDeposit(E,t)}$

L.S. Esposito, BIQ workshop, 15-16 September 2014

Energy deposition on the SC coils

EnergyDeposit(E, t)

L.S. Esposito, BIQ workshop, 15-16 September 2014

MQX quench levels

Magnet	MQPD	Lumin	osity 1E+34	Lum	inosity 2E+34	Luminosity 5E+34	
		[0	cm ⁻² ·s ⁻¹]		[cm ⁻² ·s ⁻¹]	[cm ⁻² ·s ⁻¹]	
		DPD	ratio DPD/MQPD	DPD	ratio DPD/MQPD	DPD	ratio DPD/MQPD
	[mW/cm3]	[mW/cm3]	-	[mW/cm3]	-	[mW/cm3]	-
MQXB	19.743	4.250	0.215	8.500	0.431	21.250	1.076
MQXA	50.394	3.400	0.067	6.800	0.135	17.000	0.337

Quench level is calculated for constant power in time

- DPD is debris radial average power deposition in the magnet coil
- MQPD comes from the QP3 electrothermal software, assuming constant power in time

Quench level is calculated for 6.5TeV since the Fluka debris data are 6.5TeV

Note that the Q2B scenario is calculated for the linear power rise in time, this produces ~ factor 2 lower quench limit than constant power

Quench power density higher than the values assumed so far,

(that were calculated assuming measurement results for MB)

- 18 mW/cm³ for MQXA
- 13 mW/cm³ for MQXB

[from R. Ostojic, 2005 Stability Workshop, 3-4 March 2005 and references therein]

Accidental scenarios

 $BLMSignal@Quench(E,t) = \frac{BLMResponse(E,t) * QuenchLevel(E,t)}{EnergyDeposit(E,t)}$

Figure 11: BLM signals due to collision debris (black curve), and BLM signals at magnet quench for the three considered scenarios of proton steady state losses.

 The Q2B case as accidental beam loss scenario is based on the assumption of wrong collimators settings in IR7 or of retracted TCT
re-analyses based on new tracking studies envisaged
Low signal except few BLM around Q2B

$\underline{\text{BLMSignal@Quench}(E,t)} = \frac{\underline{\text{BLMResponse}(E,t) * \text{QuenchLevel}(E,t)}}{\underline{\text{EnergyDeposit}(E,t)}}$ **BLM setting strategy (based on the Q2B scenario)**

IP1 Triplet Q2B threshold study RS10 3.0F-0 na@quench[Gy/s] 2 5E-0 sigı 2.0E-03 Debris 1E34 BLM Q2B Signal@Quench RS10 debris, 1.5E-0 signal from 1.0E-03 BLM 5.0E-04 0.0E+00 50 30 60 20 40 Distance from IP1 [m]

Rationale:

- Individuate BLMs with ratio >= 3 with respect to luminosity debris that can prevent quenches due to Q2B losses
 - → However, no BLM can protect for Q2B in all running sums (RS)
- group BLMs into families defined by the maximum RS for which the ratio is >= 3
 - keep the BLM thresholds constant from there to RS12
- energy scaling of BLMResponse and EnergyDeposition neglected by keeping their ratio constant over all energies

Proposal for IT BLM families - PRELIMINARY

Proposal for IT BLM families - PRELIMINARY

L.S. Esposito, BIQ workshop, 15-16 September 2014

Overview of the proposed strategy for IT BLMs

Monitor	Family	DCUM	old edep	old BLM	old QL	Ad hoc pre LS1	Proposal
BLMQI.01R1.B2I30_MQXA	THRI_B2.3B_MQXA[6]	21.37	4 set to maximum				se to maximum
BLMQI.01R1.B1E10_MQXA	THRI_B1.1_MQXA[8]	23.44	4 MQ_pattern_v2	IC_MQ_B1.1_v3	MQXA	Scale 1.2, UFO, DOB, RS10=RS11=RS12	ongoing
BLMQI.01R1.B2I20_MQXA	THRI_B2.2_MQXA[16]	25.6	5 MQXB_lossQ2B	IC_MQ_B1.2_v3	MQXA	UFO, DOB, RS10=RS11=RS12	ongoing
BLMQI.01R1.B1E20_MQXA	THRI_B1.2_MQXA[16]	26.6	5 MQXB_lossQ2B	IC_MQ_B1.2_v3	MQXA	UFO, DOB, RS10=RS11=RS12	Q2B RS7
BLMQI.02R1.B2I30_MQXB	THRI_B2.3_MQXB[6]	29.749	2 MQXB_lossQ2B	IC_MQXB_B1.3_v1	MQXB	UFO, DOB, RS10=RS11=RS12	Q2B RS6
BLMQI.01R1.B1E30_MQXA	THRI_3_MQXA_LumLoss[4]	32.299	2 MQXB_lossQ2B	IC_MQXB_B1.2_v2	MQXB	Scale 1.5, UFO, DOB, RS9=RS10=RS11=RS12	Q2B RS5
BLMQI.02R1.B2I23_MQXB	THRI_2_MQXB_LumLoss[2]	34.11	5 MQXB_lossQ2B	IC_MQXB_B1.2_v2	MQXB	Scale 1.5, UFO, DOB, RS9=RS10=RS11=RS12	ongoing
BLMQI.02R1.B1E21_MQXB	THRI_B1.2_MQXB[23]	35.29	5 MQXB_lossQ2B	IC_MQXB_B1.2_v2	MQXB	Scale 1.5, UFO, DOB, RS10=RS11=RS12	Q2B RS7
BLMQI.02R1.B2I22_MQXB	THRI_B2.2_MQXB[23]	37.4	1 MQXB_lossQ2B	IC_MQXB_B1.2_v2	MQXB	Scale 1.5, UFO, DOB, RS10=RS11=RS12	Q2B RS9
BLMQI.02R1.B1E22_MQXB	THRI_B1.2_MQXB[23]	38.5	7 MQXB_lossQ2B	IC_MQXB_B1.2_v2	MQXB	Scale 1.5, UFO, DOB, RS10=RS11=RS12	Q2B RS9
BLMQI.02R1.B2I21_MQXB	THRI_B2.2_MQXB[23]	40.80	3 MQXB_lossQ2B	IC_MQXB_B1.2_v3	MQXB	Scale 1.5, UFO, DOB, RS10=RS11=RS12	Q2B RS9
BLMQI.02R1.B1E23_MQXB	THRI_B1.2_MQXB[23]	41.80	3 MQXB_lossQ2B	IC_MQXB_B1.2_v4	MQXB	Scale 1.5, UFO, DOB, RS10=RS11=RS12	Q2B RS8
BLMQI.03R1.B2I30_MQXA	THRI_B2.3_MQXA[5]	43.621	2 MQXB_lossQ2B	IC_MQXB_B1.2_v2	MQXB	Scale 1.5, UFO, DOB, RS10=RS11=RS12	Q2B RS7
BLMQI.02R1.B1E30_MQXB	THRI_3_MQXB_LumLoss[4]	46.692	2 MQXB_lossQ2B	IC_MQXB_B1.3_v1	MQXB	Scale 1.5, UFO, DOB, RS9=RS10=RS11=RS12	Q2B RS3
BLMQI.03R1.B2I20_MQXA	THRI_B2.2_MQXA[16]	49.6	5 MQXB_lossQ2B	IC_MQ_B1.2_v3	MQXA	UFO, DOB, RS10=RS11=RS12	ongoing
BLMQI.03R1.B1E20_MQXA	THRI_B1.2_MQXA[16]	50.6	5 MQXB_lossQ2B	IC_MQ_B1.2_v3	MQXA	UFO, DOB, RS10=RS11=RS12	Q2B RS5
BLMQI.03R1.B2I10_MQXA	THRI_B2.1_MQXA[8]	53.63	2 MQ_pattern_v2	IC_MQ_B1.1_v3	MQXA	UFO, DOB, RS10=RS11=RS12	ongoing
BLMQI.03R1.B1E30_MQXA	THRI_B1.3B_MQXA[6]	59.012	2 set to maximum				se to maximum

- Besides the Q2:
 - Q3 thresholds will be set in the same way as IPQ thresholds, i.e., with a combination of UFO losses (>4 TeV) and orbit-bump scenario, and for MQXA quench levels.
 - Q1 thresholds will be a copy-paste of Q3. This is conservative since Q1 is equipped with a thicker liner, but a reasonable starting point in the absence of dedicated models.

Summary

- The results discussed here represent an updated of CERN-ATS-Note-2012-014 TECH
- Also in view of the updated quench limits, luminosity debris should not limit operation
- An update of the BLM families and thresholds for IT will be proposed
- Other studies in the to-do list not discussed here:
 - BLM attached to TCL collimators (accurate BML position still to be specified)
 - Matching Section BLMs during forward physics operation