

A&A Cluster in EGEE III French participation

Scientific coordinators: Franck Le Petit & Marie-Lise Dubernet - Paris Observatory

www.eu-egee.org

French participation

- Paris Observatory
 - GEPI
 - IMCCE
 - LERMA
 - LESIA
 - LUTH
 - SYRTE
 - USN
- Grenoble observatory
- Lyon observatory
- Nice observatory
- Strasbourg observatory / CDS

Observatoire de la Côte d'Azur

Observatoire

ashourg

Astronomique

- Horizon: Galaxy & Cosmology
 - Cosmological parameters inference (Pier-Stefano Corsaniti et al. LUTH)
 - Re-ionization period (B. Semelin LERMA / D. Valls-Gabaud et al. GEPI)
 - Galaxy Mergers (F. Combes et al. LERMA / P. di Matteo GEPI)
 - Gravitational galaxy dynamics (H. Wozniak CRAL)

• Herschel - ALMA preparation

- Atomic & Molecular physics (M.-L. Dubernet et al. LERMA, A. Faure et al. LAOG)
- Physics and chemistry of ISM (F. Le Petit et al. LUTH)
- Protoplanetary disks (F. Menard LAOG)

Celestial mechanics

- Long period evolution of comets.
- Computation of meteoroid streams
- Chaotic diffusion in the solar system
- High energy astrophysics: CTA design study (A. Zech et al. LUTH)
- Grid & Virtual Observatory
 - Workflows for data reduction (E. Slezak Nice obs. and A. Schaaf CDS)
 - Online numerical simulation services (F. Le Petit F. Roy / VO-LUTH)
 - Datamining (J. Berthier / VO-IMCCE)

A&A Cluster in EGEE III French participation

Cosmological Parameter inference

Pier-Stefano Corasaniti - LUTH

Goal: Constrain cosmological parameters

Method:

- Exploration of parameter space with Mark Chain Monte Carlo
- Large number of cosmological parameters
 - H: Hubble constant
 - Ω_{λ} : density parameter for the cosmological constant
 - Ω_M : density parameter for matter
 - Ω_X : density parameter for dark energy
 - Ω_r : density parameter for radiation
 - •••

• Evaluating the likelihood between the model and the observations

- CMB
- Supernovae
- Galaxy clusters

Similar problem has been successfully deployed on the Grid: ZEN project - André Tilquin - Centre de physique des particules de Marseille.

A&A Cluster in EGEE III French participation

Study of the re-ionization

David Valls-Gabaud, Carolina Leon, GEPI / Observatoire de Paris Benoît Semelin, Françoise Combes, LERMA / Observatoire de Paris

Goal: Simulate the ionization processes in a small volume of the high-redshift universe

in perspective to SKA

- Bring a large scale structure simulation on the grid
- Monte Carlo radiative transfer on this simulation
 - ionization at different transitions
 - Lyman-alpha and 21 cm line emission
 - Grid will permit to refine the radiative transfer

Galmer project: Galaxy Merger

F. Combes, P. Di Matteo, A.-L. Melchior, B. Semelin – LERMA / Paris Obs.

Goal: simulate galaxies interactions and mergers of galaxies to study their effects on galaxy evolution and stars formation **Grid** will permit a refinement of the physics in the models

- Statistical study of mergers of galaxies
- Explore the effect of input physical parameters:
 - mass ratio, orbital parameters, tidal effect ...

Monte Carlo radiative transfer of the 21 cm H I line on a large scale structures simulation B. Semelin / LERMA / Paris Observatory

P. Di Matteo et al., A&A, 2007, 468, 61

Gravitational galaxy dynamics

Hervé Wozniak - Observatoire de Lyon

Goal: Determination of orbits of stars in galaxies

- A galaxy is made of $\sim 10^{10}$ stars moving in a gravitational potential due to the mass distribution of stars, dark matter, gas, dust, etc.
- Reproduce observed density distribution determining the number of stars per orbit.

GRID.

problem.

also make use of the

Atomic & Molecular physics

M.-L. Dubernet, C. Balança, F. Dayou, N. Feautrier, A. Spielfiedel – LERMA / Paris Observatory A. Faure, P. Valiron - Grenoble / LAOG

Goal: Determination of collision rates in molecular systems and chemical reaction rates for interpretations of observations in non-LTE media.

- Collision rate coefficients are function of temperature
- high temperature: enough high kinetic E
 - Required to interpret observations in shocks & Star forming regions
- Low temperature: enough point close to threshold (resonance)
 - Required to interpret observations in warm and cold cloud

Thanks to the large number of processors in the Grid:

- get faster results
- treat systems with large number of freedom degrees

Experience of Grenoble team on CIGRI grid for such simulations

A&A Cluster in EGEE III French participation

Modeling of the Interstellar Medium

F. Le Petit, F. Roy, J. Le Bourlot, E. Roueff - LUTH / Paris Obs.

Goal:

- Explore the influence of parameters (density, UV field, ...) on the chemical structure of interstellar clouds.
- Models of photodissociation regions solves in a consistent way
- Radiative transfer, chemistry, thermal processes in non LTE media
- Large number of input parameters
 - Property of the gas: Illumination, density structure, chemical abundances
 - grains composition and properties

Pety et al.

Thanks to the large number of processors in the Grid we can expect:

- Sharper interpretations of observations from next generation of instruments
- Explore in more details parameters space:
 - Study "exotic ISM" as diffuse clouds at high redshifts: Damped Lyman systems
 - 240 000 CPU hours to build a grid covering parameter space as for standards ISM

A&A Cluster in EGEE III French participation

Celestial mechanics

J. Berthier, M. Fouchard, J. Frouard, M. Gastineau, V. Lainey, J. Laskar, J. Lecubin, F. Vachier, J. Vaubaillon, W. Thuillot IMCCE / Paris Observatory / CNRS

- Long term evolution of comets M. Fouchard
 - Transportation from Oort cloud to the Earth neighbourhood
 - Trace of the Solar System formation.

Technique: Simulate the evolution of a large number of comets (10^6) on time scale equals to the age of the solar system.

- Forecasting meteor showers J.Vaubaillon
 - Reproduce the ejection of meteoroids regular meteoroid influx on the Earth
 - Follow the evolution of the flux of metoroids by perturbators
 - Estimate when the Earth cross the trajectory

Activity level prediction of Leonids - J. Vaubaillon

Celestial mechanics - IMCCE / Paris Observatory / CNRS

J. Berthier, M. Fouchard, J. Frouard, M. Gastineau, V. Lainey, J. Laskar, J. Lecubin, F. Vachier, J. Vaubaillon, W. Thuillot IMCCE / Paris Observatory / CNRS

- Orbital models of natural satellites V. Lainey
 - Numerical integration of thousands of differential equations simultaneously, with a small step size.
 - Integration of the equations of motion over thousands of million years
- Orbital models of asteroid satellites J. Berthier
 - Inversion problem solved by metaheurisitics
- Chaotic diffusion in the Solar System : J. Laskar, M. Gastineau
 - Determine the stability of the planetary orbits over 5 Gyr.
 - Partners: IN2P3 & Grid Institute

Determination of the fall of Phobos on Mars V. Lainey

A&A Cluster in EGEE III French participation

High energy astrophysics

A. Zech - LUTH / HESS collaboration Cherenkov Telescop Array Design Study

• Detection of Very High Energy (~TeV) Gamma Rays observing the "showers" of charged particles when entering the atmosphere.

• CTA will have several tens of telescopes of different sizes to improve sensitivity and resolution and to greatly increase the number of observed sources.

Goals:

• Design Study to possible array and telescope configuration over a large range of parameters (e.g. distance, size, number of telescopes etc.) with massive simulations.

Take advantage of the GRID to:

- obtain results rapidly (large CPU time needed)
- access shared data storage resources (a few % of LHC data volume)
- coordinate contributions by many institutes in different countries.

Virtual Observatory & Grid

 International project to build an interoperability layer on archives, databases, tools and services provided by datacenters

- Provide services and data with added value to the community
- Strong links between Virtual Observatory and Grid in the A&A community
 - Grid working group in ASOV (Action Spécifique of CNRS on Virtual Observatory)
 - Common meeting in Garching mars 2008: VO-Theory and Grid
 - EuroVO-DCA WP5: Grid leaded by Giuliano Taffoni

Restauration of images by wavelets

Eric Slézak - Observatoire de Nice / CNRS André Schaaff - Observatoire de Strasbourg / CNRS

 Developement of a workflow allowing to automate images restoration using wavelets methods thanks to Aïda, a workflow engine developed at Strasbourg Observatory.

• Porting this workflow on the EGEE grid will allow a faster data reduction.

This work will be done in a first time on MEGACAM images from the CFH telescope.

Access to online legacy codes via the Virtual Observatory

F. Le Petit, F. Roy - LUTH Paris Observatory

Goal: provide to the community online access to state-of-the-art simulation codes through the Virtual Observatory

with computing ressources on demand.

- Make use of Astrogrid infrastructure
- Codes run at Paris Observatory
- Users do not see the complexity behind the GUIs
- Collaboration with Naples Observatory to use transparently the Grid

Workflows & datamining

J. Berthier, W. Thuillot in collaboration with GEPI - CAI Institut de Mécanique céleste et de calcul des éphémérides - Paris observatory - CNRS

Massive data mining of astronomical archives to seek for pre-discovery astrometric positions of small solar system objects (mainly asteroids and comets)

Status of the project

Organization

P. Le Sidaner, A. Marchand, A. Shih - SIO / Paris Observatory

Paris Observatory coordinates the french national efforts for the A&A Cluster in EGEE III

Paris observatory provides:

- EGEE node at Paris Observatory in 2008 (funding by INSU & Paris Observatory)
 - more than 100 CPU shared on the grid in EGEE

Manpower

- servers and middleware management
- help scientists to deploy applications on the Grid
- Coordination of training for the french A&A community

Challenges:

- Heterogenous applications: Strong tests for EGEE and for applications
- different librairies, compilers, sharewares (Molpro) are required
- Challenging applications:
- Large simulations: lots of ressources required
 - Investigation of input parameters space Order 0 parallelization
 - Optimization at algorithms levels
 - Radiative transfer
 - Collaboration Applied Mathematics Department Centrale Paris / LUTH
 - Full benefit of the Grid: error management
 - Share experience between projects: CTA project / Auger Project
- Mass of data sharing on the Grid Virtual Observatory projects
- Requirement for **processors types** for reproducibility
 - chaotic diffusion in the Solar System

Conclusion

- Strong motivation of A&A scientists to bring their applications on the Grid.
- Mainly applications in numerical simulations: need CPU
- Use of the grid for large instruments (Ex: CTA) also require storage and data sharing
- But no experience on grid computing and gridification
- Need for training and support:
 - deploy application on the grid
 - management
- Benefit from the help of:
 - IPSL / Earth Science M. Petitdidier & David Weissenbach
 - INAF Giuliano Taffoni