

Alejandro PUIG BARAÑAC
On behalf of the CMS GEM
collaboration

Outline

- Goal
- GEM chamber tests
- Materials to be tested
- Types of tests on the materials
- Test conditions
- Possible irradiation facilities
- Important parameters
- Conclusions

Goal

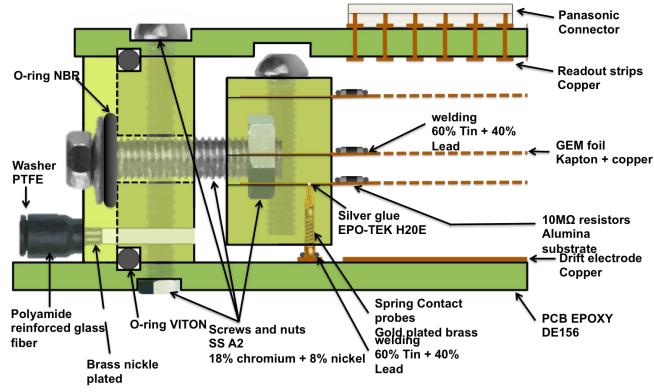
- Reproduce the conditions that the chamber will undergo at CMS, with respect to neutrons.
- The chamber will be in similar conditions as in CMS (HV, gas mixture, cooling system).
- Study the neutron irradiation effect on the GEM chambers performance.
- Observe the modification of the chamber's materials properties.
- It will be necessary to perform tests before and after irradiating the chamber and the material samples.

GEM chamber tests

- Research on GEM's irradiated with neutrons has previously been done.
 - Croci, G. (n.d.). Development and Characterization of Micro-Pattern Gaseous Detectors for HEP applications and beyond.
- Discharge probability test
 - Similar to the test done at RD5
 - How to identify discharges?
 - Jeremie's previous talk
 - Alternatives

J. Merlin https://indico.cern.ch/event/324982/contribution/3/material/slides/0.pdf

GEM chamber tests


- Sensitivity test
 - Detector needs to be operational
 - The acquisition time can be obtained from simulations.
 - A large amount of events will be necessary to have good statistics.
- Stability test
 - Observe if the detector performs well after being irradiated during a specific amount of time.
- Deexcitation test
 - Study for how long do we continue to observe particles after there is no source irradiating

Materials tested

J. Merlin https://indico.cern.ch/event/324982/contribution/3/material/slides/0.pdf

Materials tested

- Many materials have been tested at CERN already. See the "CERN Yellow Book" Compilation of Radiation Damage Test Data.
- Some new materials need to be tested.
 - Polyurethane Novoverne used as an electric insulator (electric properties).
 - Scotch weld EC100 glue and Scotch weld activator AC11, used to glue the Viton O-rings (mechanical properties).
 - Ceramic resistors 10 M Ω alumina substrate (electric properties).
- It will be interesting to reproduce and compare the results of materials previously studied with the results obtained from new tests.

Types of tests

- Materials will need to be tested before and after irradiation.
- Mechanical tests
 - Standard traction, bending and shear tests for those materials submitted to mechanical stresses.. Need to have an important amount of samples in order to have acceptable results.
 - Glues will be tested also following standard methods.
- Electric tests
 - Electric insulating properties of both the PU and the film layer on top of the PCB must be measured.
 - According to literature conductance and capacitance of resistors varies with frequency. This
 will need to be measured.

Test conditions

- Two types of test, active or passive.
- GEM chamber must undergo an active test (HV, gas mixture, cooling system).
 - Some facilities have expressed their concern to use our gas mixture
- Materials can be tested with a passive test
- Due to the dimensions of the chamber (almost 1m²) it will not be possible to homogenously irradiate the whole chamber.
- If thermal neutrons are used the chamber will probably be too radioactive to handle.
- We are in the process of studying how neutrons react with other materials
- How to properly reproduce CMS conditions?

Test conditions

CMS Muon System background (L = 10³⁴ cm⁻²s⁻¹)

Region	Neutrons		Photons			Charged	
	Flux (cm ⁻² s ⁻¹) Max	Fluence (cm ⁻²) Max	Flux (cm ⁻² s ⁻¹) Max	Fluence (cm ⁻²) Max	Dose (Gy) Max	Flux (cm ⁻² s ⁻¹) Max	Fluence (cm ⁻²) Max
GE1/1	5,6 x 10 ³	2,8 x 10 ¹⁰	2,5 x 10 ³	1,3 x 10 ¹⁰	5,6 x 10 ⁻²	1,2 x 10 ²	6,0 x 10 ⁸
GE2/1	1,3 x 10 ⁴	6,5 x 10 ¹⁰	3,9 x 10 ³	2,0 x 10 ¹⁰	8,7 x 10 ⁻²	5,0 x 10 ¹	2,5 x 10 ⁸
MEO	2.8 x 10 ⁶	1,4 x 10 ¹³	6.0×10^7	3,0 x 10 ¹⁴	1,3 x 10 ³	8,2 x 10 ⁶	4,1 x 10 ¹³
RE3/1	1,9 x 10 ⁴	9,5 x 10 ¹⁰	3,8 x 10 ³	2,0 x 10 ¹⁰	8,5 x 10 ⁻²	2,6 x 10 ¹	1,3 x 10 ⁸
RE4/1	1,1 x 10 ⁴	5,5 x 10 ¹⁰	9,3 x 10³	4,7 x 10 ¹⁰	2,1 x 10 ⁻¹	1,6 x 10 ²	8,0 x 10 ⁸

- Fluence is calculated for 1 y LHC = 5×10^6 s
- Dose <u>in air</u> calculated with 1 MeV γ

Possible overestimation due to:

- Forward Calorimeter not implemented
- Post LS1 Shielding not implemented

For an estimation for HL LHC (5 x 10³⁴ cm⁻²s⁻¹) the values in the table must be multiplied by a factor 5

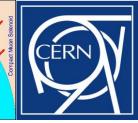
S. Constantini, https://indico.cern.ch/conferenceDisplay.py?confld=288056
25/03/2014
ILARIA VAI - GEM WORKSHOP VIII - DAQ HARDWARE MEETING

Possible irradiation facilities

- Lena (Pavia, Italy)
- Enea (Casaccia , Italy)
- Enea (Frascati, Italy)
- PSI (Switzerland), only thermal electrons. Very Expensive to build a system for a big GEM chamber
- Louvain la Neuve (France)
- TSL (Uppsala, Sweden)
- Laboratoire Léon Brillouin CEA (France). Possible geometry constraints
- Institut Laue-Langevin (France).
- PRISMA (Germany). Not yet possible, they are planning to have a special facility to irradiate gas detectors.
- NCBJ (Poland).

Important parameters

- Dimensions
- High voltage
- Gas mixture
- Cooling system
- Activation of the materials.



Conclusions

- Most of the materials will be tested (re-tested)
- Which facility should be used?
 - Geometric, HV, gas and cooling system constraints
 - Economic constraints
 - Type of beam constraints
- Design tests to study the evolution of electric and mechanical properties of the materials.
- We are still at a very preliminary stage

All suggestions will be appreciated Thank you for your attention