Origin and simulation of sparks in MPGD

Sébastien Procureur CEA-Saclay

Overview

Simulation of sparks (Micromegas)

- \rightarrow Geant4 and origin of sparks
- \rightarrow Open questions

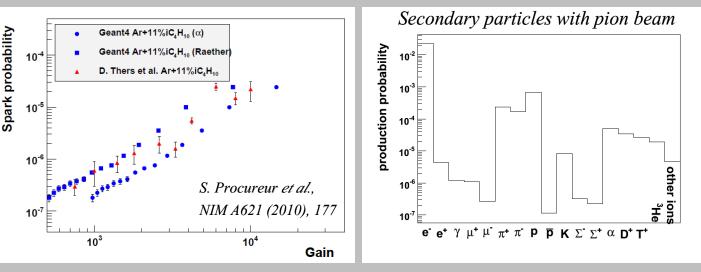
Recent spark rate measurements in beams

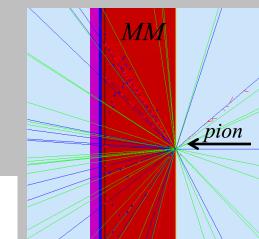
- \rightarrow *Effect of the beam energy*
- \rightarrow Effect of the magnetic field

Effect of a GEM foil on the spark rate

- \rightarrow Experimental observations
- \rightarrow From Raether to a charge density limit
- \rightarrow Comparison with data

Conclusion


Sparks in MPGD



Simulation of sparks: Geant4

Sparks can be related to large energy deposits in Geant4, often originating from secondary, highly ionizing particles

=> Simple spark condition: $N_{el} \sim a$ few 10⁷ (Raether)

 \rightarrow 1st simulation to reproduce « historic » data at 15 GeV/c pion beam, using $N_{el} = 2.10^7$

 \rightarrow explained large part of the gas effect (more sparks with heavier gas)

Open questions

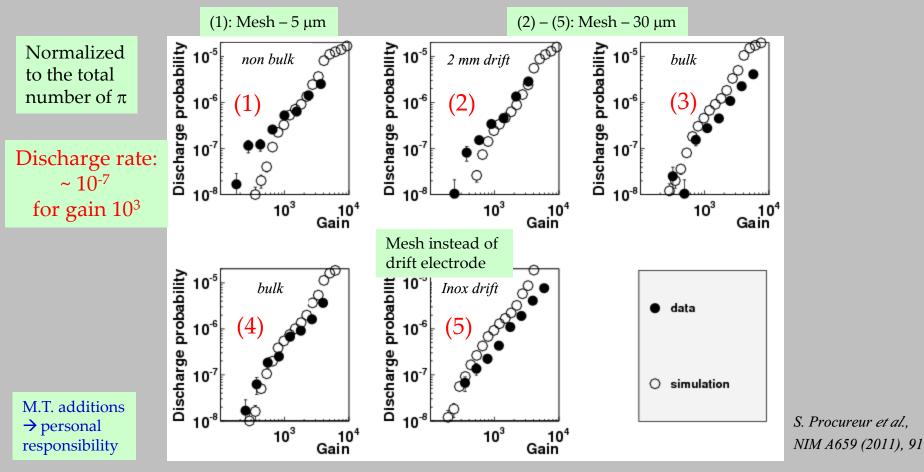
- 1) Behaviour of the spark rate with beam energy?
- 2) Influence of the materials in Micromegas (e.g. mesh for bulk)
- 3) Effect of a transverse and longitudinal magnetic field?
- 4) Why a GEM detector sparks less?

 \rightarrow To answer these questions and further validate the simulation, a series of beam tests were scheduled in the period 2009-2010:

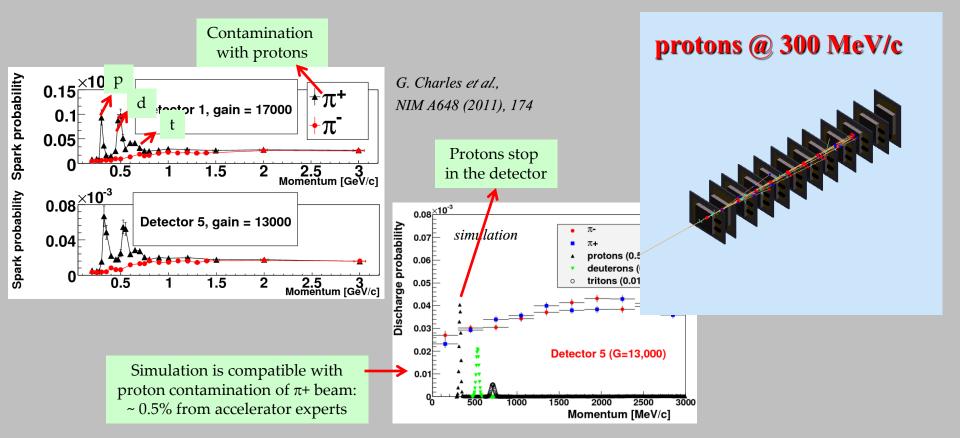
- Oct 2009 @ CERN/SPS (RD51 beam period)
- July 2010 @ JLab/Hall B
- Aug 2010 @ CERN/PS

Sparks and beam energy

Tests @ CERN/SPS and PS


Location	CERN/SPS	CERN/PS
Date	10/2009	08/2010
Goals	Spark rate in high E beam Effect of B_{\perp}	Spark rate in low E beam Effect of a GEM foil
P _{beam}	150 GeV/c	0.2 - 3 GeV/c
Particles	Π	$\mathbf{\Pi}^{\scriptscriptstyle +}$, $\mathbf{\Pi}^{\scriptscriptstyle -}$, p
Beam intensity	$\leq 10^6 / spill$	$\leq 5.10^5$ / spill
Spill	10 s every 50 s	0.4 s every 50 s
Gas	$Ar+5\% iC_4H_{10}$	$Ar+5\% iC_4H_{10}$

MM Tests @ SPS: results & simulation


→ no significant difference between thin and thick mesh (as predicted) → reasonable agreement with the simulation using $N_{el}=2.5\ 10^7$ → a_{el}^{W} => Almost the same N_{el} to describe data at 15 and 150 GeV/c

within "assumed avalanche volume: 300 x 300 µm²

<u>S.Procureur</u>

Sparks in MPGD

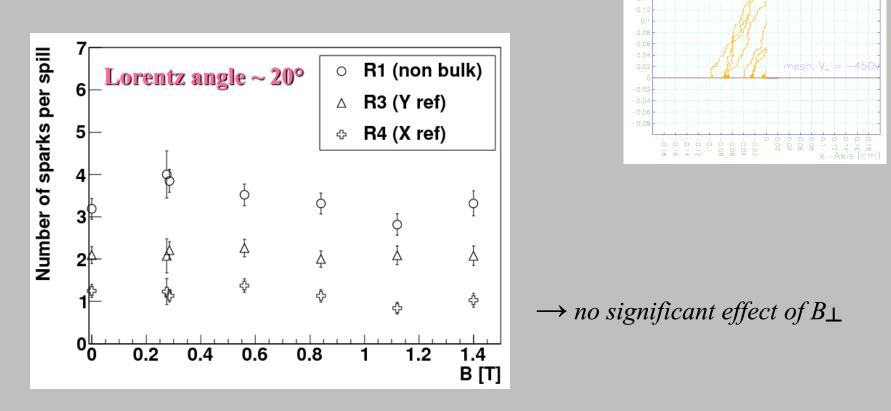
Tests @ PS: results & simulation

 \rightarrow explains the positions and approximate amplitudes of the peaks in the Π^+ beam (proton, deuterium, tritium) \rightarrow reasonable agreement with the simulation using $N_{el}=4\ 10^7$

=> Similar N_{el} to describe data from 0.3 to 150 GeV/c

Sparks in MPGD

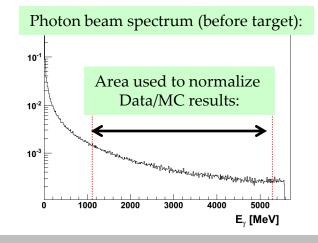
Sparks and magnetic field

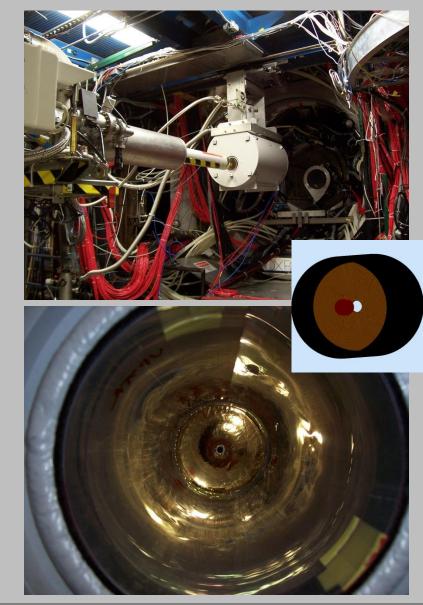


B_⊥**E: tests at CERN/SPS**

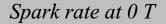
- Make use of the Goliath magnet (B up to 1.5 T)

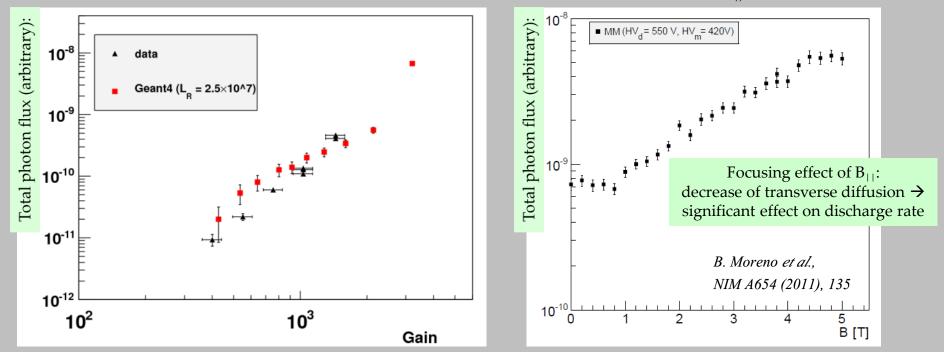
- Naively expect spark rate reduction due to spread of charge


=> suggests that spark results from energy release close to the micromesh (though decrease has been indeed observed at larger Lorentz angle)


Sparks in MPGD

B//E: tests at JLab/Hall B


Location	JLab/Hall B	
Date	08/2010	
Goals	effect of B _{//}	
	effect of a GEM foil	
P _{beam}	0 – 5.5 GeV/c	
Particles	photons on CH ₂ target	
Beam intensity	≤ 2.5 10 ⁹ / s	
Spill	continuous beam	
Gas	Ar+10%iC ₄ H ₁₀	



Sparks in MPGD

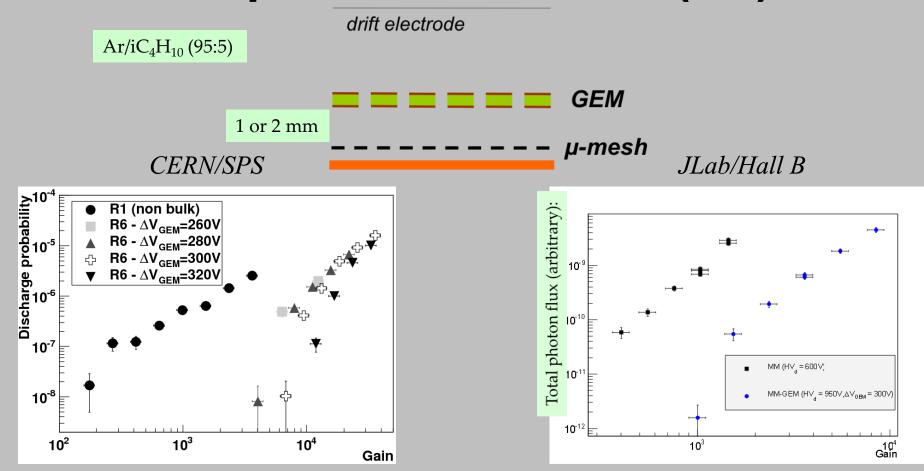
B//E: tests at JLab/Hall B

*Effect of the B*_{//}*field*

 \rightarrow reasonable agreement with the simulation using N_{el} =2.5 10⁷ (again) \rightarrow spark rate increased by a factor of 10 between 0 and 5 T

<u>S.Procureur</u>

⇒ Proves that transverse diffusion effect plays a role, i.e. a charge density is more relevant than a global limit « a la Raether » in our case

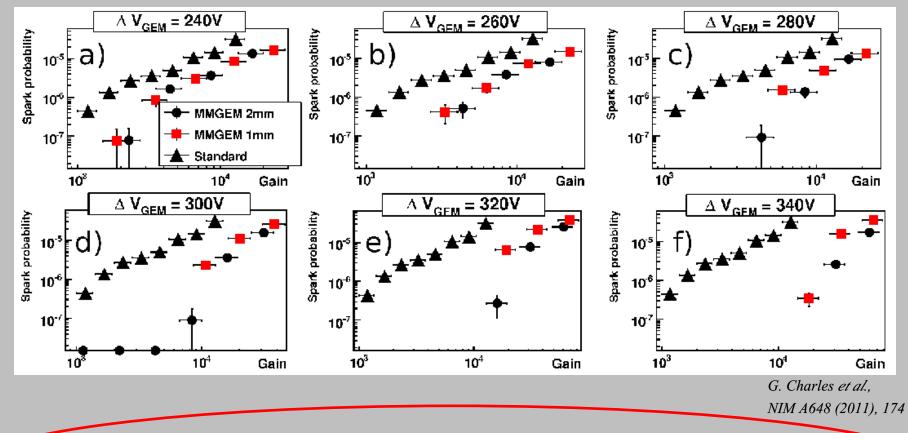

Sparks in MPGD

Effect of a GEM foil on the spark rate

Experimental results (1/2)

 \rightarrow spark rate reduction by a factor of 10 to 100

 \rightarrow reduction is largely independent on the setup (i.e. intrinsic to detector)


 \rightarrow reduction is enhanced by using higher GEM gains

Sparks in MPGD

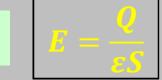
Experimental results (2/2)

Comparison between MM-GEM with 1 and 2 mm transfer gap (CERN/PS)

 \rightarrow At small GEM gains, the transfer gap plays no role in the spark reduction \rightarrow At higher GEM gains, a large transfer gap further reduces the spark rate

Sparks in MPGD

RD51, June 2014

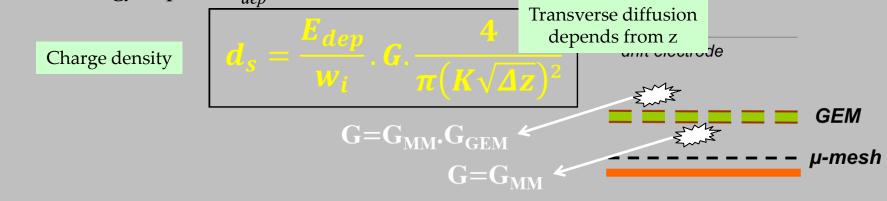

S.Procureur

Towards a charge density criteria

- → *Take into account transverse diffusion between interaction and micro-mesh Raether limit not adapted anymore, as originally derived for single (localized) avalanche*
- \rightarrow A spark occurs when the electric field exceeds the breakdown field
- \rightarrow The field between the electron cloud and the strip is:

Field created by avalanche

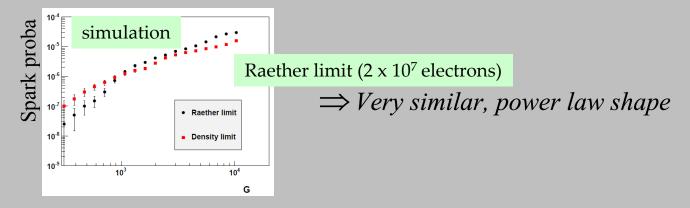
Sparks in MPGD

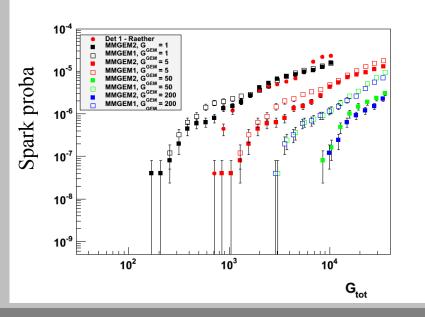


 \Rightarrow Spark criteria should now be on the surface density $d_S = Q/S$

Charge density

<u>S.Procureur</u>


 \rightarrow An energy deposit E_{dep} in Geant4 at a distance Δz of the anode yields:

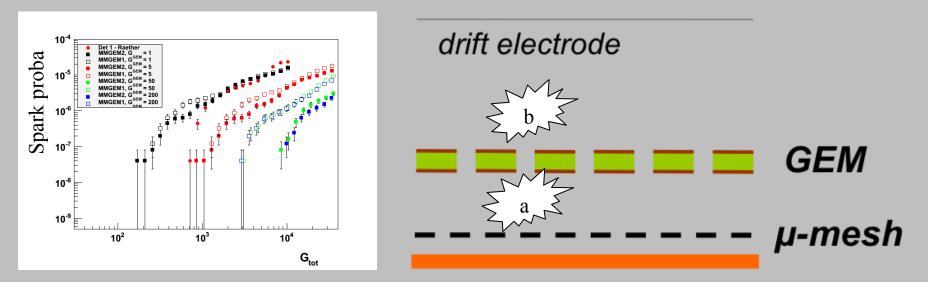

<u>RD51, June 2014</u>

Towards a charge density criteria

 \rightarrow Comparison of the 2 criteria (Raether and charge density) on a standard configuration

 \rightarrow Simulation of MM-GEM with different GEM gains and charge density criteria

- \Rightarrow Explains all effects seen with MM-GEM
 - \rightarrow Large suppression with moderate GEM gains
- \rightarrow Effect of transfer gap only at high GEM gains
- \rightarrow Change of slope at high GEM gains


At higher GEM gains transfer gap plays a major role → it is all about the charge density

Sparks in MPGD

Simulation of MM-GEM

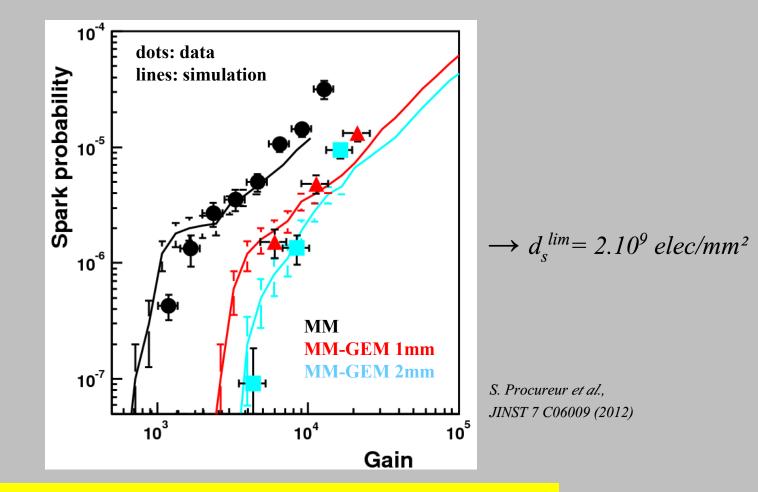
Some explanations

 \rightarrow At small GEM gains, sparks from (a) are favoured (because of transverse diffusion)

 \Rightarrow No difference between 1 and 2 mm transfer gap

 \rightarrow Increasing GEM gains at fixed total gain progressively suppresses sparks from (a) \Rightarrow Progressive reduction of spark rate

 \rightarrow At high enough GEM gains, sparks from (a) are suppressed, (b) start to be dominant


 \Rightarrow A large transfer gap further reduces the spark rate in this regime

Sparks in MPGD

Comparison with data

 \rightarrow Comparison at $\Delta V_{GEM} = 280 V$ (intermediate regime):

 \Rightarrow Quantitative understanding of spark reduction with GEM foils

Sparks in MPGD

Conclusion

 \rightarrow Origin of sparks with hadrons quantitatively understood in Micromegas

- \Rightarrow Related to large energy deposits in the detector, often from secondaries
- \Rightarrow Well compatible with Raether limit in cases where transverse diffusion effect can be neglected
- \rightarrow Validity of the model has been checked from 0.3 to 150 GeV/c

 \Rightarrow Can use Geant4 to make predictions in a given configuration

- \rightarrow Measurements of the B effect (up to 1.5 T for B_{\perp} , 5 T for $B_{//}$)
- \rightarrow Validity of the simulation extended to GEM foils by taking into account trans. diff.
 - > Spark data interpreted in terms of (surface) charge density instead of « naive » Raether limit
 - \Rightarrow Quantitative description of the effect of a GEM in the spark rate reduction