sinn iflifen en enn

Infinite parallel plates at distance L with a potential difference of ΔV
At $t=0$ uniform electric field of $\mathrm{E}_{0}=\Delta \mathrm{V} / \mathrm{L}$
Positive ions generated at the anode at a constant and uniform flux R
lons moving towards the cathode at speed $v=\mu \mathrm{E}$
Actual electric field E modified by the charge distribution

Steady state solution

$$
\begin{aligned}
& E_{z}=\sqrt{\frac{2 R\left(z+z_{0}\right)}{\epsilon \mu}} \\
& \rho=\epsilon \frac{d E_{z}}{d z}=\sqrt{\frac{\epsilon R}{2 \mu\left(z+z_{0}\right)}} \\
& \Delta V=\int_{0}^{L} E_{z} d z=\sqrt{\frac{8 R}{9 \epsilon \mu}}\left(\left(L+z_{0}\right)^{3 / 2}-z_{0}^{3 / 2}\right) \\
& \quad \text { with } z_{0} \text { such that the integral of the field equals } \Delta V
\end{aligned}
$$

In general

- The electric field module decreases where the ions "enter" and increases where the ions "exit"
- For more complex (realistic) problem one needs a numerical calculation: FEA with COMSOL

Approach

Start with a simple problem (no charge amplification) sensitive to space charge distribution:
the electron transparency of a GEM-like metal mesh changes with the X-ray flux

Mesh transparency studies are related to yesterday Patrik's talk

GEM-like mesh

2D axial symmetry

8keV X-rays

Drift ${ }_{1}$
Mesh
Diameter $=30$ um
Pitch $=120 \mathrm{um}$
Thickness $=5 \mathrm{um}$
Drift ${ }_{2}$

Relevant parameters:
Drift regions and fields
Interaction flux
$\mu_{\mathrm{e}-}=5 \mathrm{~cm}^{2} / \mathrm{us} / \mathrm{kV}$
$D_{\mathrm{e}-}=100 \mathrm{~cm}^{2} / \mathrm{s}$
$\mu_{\text {ion }+}=1.5 \mathrm{~cm}^{2} / \mathrm{s} / \mathrm{V}$
$\mathrm{D}_{\text {ion }+}=0$ (approximately)
\#e-fion+ $=330 \mathrm{e}$-/interaction
GEM gain $=1.5 \times 10^{4}$
'IBF' = 20\%

Ion space charge

Field lines
change:
T increases

Example

In the center of the hole

Electron transparency

Preliminary: quantitative comparison with data not yet done, but trends are reproduced and numbers involved are correct

Summary

This effect can alone explain the transparency variation of the meshes

It is linked to the gain and IBF variations of the GEM and it may help explaining the gain increase and the IBF decrease (increase of the GEM transparency and transfer efficiency)

Further

Implement the proper electron and ion transport properties and compute the transparency behaviour of different gas mixtures

Simulate a single GEM hole including the avalanche process

Further

Changing the interaction rates, fields and gas mixtures, systematic measurements of:

- mesh transparencies to e^{-}and ion $^{+}$
- single GEM behaviour, i.e. transparency, gain and IBF

Quantitative comparison with the numerical calculations

Analytically

$$
\begin{array}{ll}
|\vec{v}|=\mu|\vec{E}|=\mu E_{z} & \text { For symmetry reasons E } \\
R=\rho v_{\perp}=\rho|\vec{v}| & \text { Ion flux conservation } \\
\rho / \epsilon=\vec{\nabla} \cdot \vec{E}=\frac{d E_{z}}{d z} & \text { Maxwell first equation } \\
R=\epsilon \mu \frac{d E_{z}}{d z} E_{z} & \\
d z=\frac{\epsilon \mu}{R} E_{z} d E_{z} & \\
z=\frac{\epsilon \mu}{R} E_{z}^{2} / 2-z_{0} & z_{0} \text { is the integration con }
\end{array}
$$

Moreover

$E=0$ at the anode (for $z_{0}=0$). Therefore, it exists a maximum ion flux or, equivalently, a minimum nominal field for which the ions still drift

$$
\begin{aligned}
R_{\max } & =\frac{9 \epsilon \mu E_{0}^{2}}{8 L}
\end{aligned} \quad \mathrm{E}_{0}=\Delta \mathrm{V} / \mathrm{L} \text { is the electric field at } \mathrm{t}=0 \text { (nominal field) }
$$

Validation

