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Gain fluctuations in GEM detectors
Dezső Varga (Wigner RCP, Budapest)

● Motivation: problem of gain fluctuation statistics for 
combined GEM-s

● Steps of the avalanche / charge collection, analytic 
formulae for superimposed processes

● Experimental test: prediction for 55Fe energy resolution
● Comparison to simulations (from Taku Gunji)
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Measurements         Simulation

Statistical calculation

Multi-GEM with broad 
parameter space

Very effective, but still 
many parameters

● Energy resolution: contributions from all sources of fluctuations 

● In “Single” gain stage, such as MWPC or MM, the avalanche 
fluctuation is the main source 

● For multiple stages such as GEM, there is fluctuation from 
collection, extraction in all steps: how to account for these?
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Simplest “multi-stage” system: 
measurements with GEM+MWPC

● Effective GEM gain: 2-
10 (directly measured)

● Total gain 4000-6000

● Amplifier+ADC 
nonlinearity carefully 
checked

Edrift

Etransfer
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Measurements in Ar+CO2 (80:20)

● Effective gain 1.8 ● Effective gain 7
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Measurements in Ne+CO2 (90:10)

● Effective gain 2.2 ● Effective gain 7.3
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Effective gain vs. UGEM
● Note strong dependence on transfer field!

Ne+CO2 Ar+CO2
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Effective gain vs. transfer field

● Linear dependence (no plateau) for a given GEM voltage: 
low fraction of the avalanche is extracted                                 
  (arrows indicate the energy resolution measurements)

GEM voltage:
       280V

 In Ar+CO2
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Fe55 RMS resolution vs. effective gain
● Ar+CO2 (80:20)● Ne+CO2 (90:10)

Observation: energy resolution seem to depend 
to first order on effective gain!
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Relevant processes contributing to 
avalanche and transfer fluctuations

● A: transfer to GEM hole with 
probability c (collection)

● B: avalanche with mean of N and 
relative variance f

● C: transfer from GEM avalanche, 
random selection of electrons 
with probability t (extraction)

● D: avalanche in subsequent 
stages (for MWPC, assume 
infinitely large exponential 
distribution)

Note: GEM effective gain is G=cNt  
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Fluctuations for general 
subsequent processes

● First process, starts with 1 electron, emerging random n 
electrons, probability distribution ρ(n)

● Second process, starts with n electrons, and each electron 
gives rise to random m electrons with probability distribution 
α(m)

● The two processes result in total of k electrons. Mathematical 
question: what is the probability distribution for k? Which are 
the moments (mean, RMS) of k?
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Formula for (RMS/Mean) of the 
complete avalanche process

● Collection with c prob. (collection efficiency)

   (RMS/mean)2 = 1/c – 1

● Avalanche with mean N and variance of 
f=(RMS/mean)

   (RMS/mean)2 = (1/c-1) + (1/c) f2

(Avalanche fluctuation is not exponential, f = 0.6 – 0.8)
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Formula, cont'd
● Extraction step with t probability:                        

      →  SINGLE GEM CASE

● Including gain stage (MWPC or later GEM-s), 
compounded gain fluctuation F=(RMS/gain)
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Rewriting with more practical 
notation: 1GEM + (other stages)

● Effective gain of the stage G:

           G=cNt  (collection *  multiplication *  extraction)

  
● f, F: true gain fluctuations for GEM and “all other”
● As a function of 1/G, the (RMS/Mean)2 should be a straight 

line (other parameters change only slowly with GEM voltage)
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Relating to measured 55Fe resolution

● Adding primary fluctuation (with Fano factor) 
and total gain fluctuation

● Fano at 6keV = 0.15 – 0.2
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Fe55 RMS resolution vs. effective gain
(full collection case)

● Ar+CO2 (200 primary)● Ne+CO2 (158 primary)

(Assume <1% instrumental fluctuations in both cases)
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Resolution2 vs. 1/(effective gain)

● Ne+CO2         
(158 primary)

● Ar+CO2             
(200 primary)

The prediction
seems to hold!

Needs idea on f

(Note also funny
factor 2 in slope)
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Comparing simulations
with calculation

● Simulations done by Taku Gunji
● Single GEM case, in very broad range of 

parameters: aim now to see the main trends
● Many details to be understood in these 

preliminary comparisons: capture on kapton, 
attachment to gas, etc... 
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Gain fluctuation: (simulation)/(formula)

● Assume f=1 
(exponential 
avalanche)

● Note LP and 
SP offset

● Note Bic/Cyl 
offset
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Assuming multiplication dependent 
fluctuation in NeCO2 (f value)

● f=(RMS/mean) of avalanche decreases with N
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Comparing single GEM formula
vs. simulation
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● Collection efficiency measurement: assumed 
to be (effective gain)/(gain plateau)

UGEM=300V

(Nice agreement)

LP GEM drops faster
than S GEM (known)

Access to collection process: 
Drift (cathode) field dependence
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Predicted energy resolution vs.
collection efficiency (c)

● Blue line: correct 
formula, gives 
reasonable 
description

● Blue line: intuitive 
sqrt(1/c) function, 
incorrect slope

● Steeper than 
predicted – cloud 
size not much larger 
than pitch?

RMS
mean

≈√ 2
c
−1
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Comparison to simulations: 
dependence on collection efficiency

● ???

to be

understood...
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Conclusions

● Gain fluctuations in GEM-s: complex 
phenomenon involving all sources of amplification 
process

● Measured energy resolution may be reasonably 
predicted from statistical calculation

● Parameters: c, N, f, t for each layers
● Intrinsic avalanche fluctuation properties are 

important
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Backup slides
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Extraction efficiency
from simulations

● Extraction efficiency is small, but non negligible!
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Example: RMS/mean simulated for GEM

● Ar+CO2 90:10, simulation (from the thesis of 
dr. Heinrich Schindler, 2012)

● (Detailed comparison

will be needed under

same conditions)
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