An InGrid based Low Energy X-ray Detector for the CAST Experiment RD51 Miniweek - WG2 CERN

Christoph Krieger¹, Klaus Desch¹, Jochen Kaminski¹, Michael Lupberger¹, Theodoros Vafeiadis²

 $^1 {\sf University}$ of Bonn

 $^{2}CERN$

19th of June 2014

Physikalisches Institut

Outline

- 2 An InGrid based Low Energy X-ray Detector
- Tests at an X-ray Generator

The CERN Axion Solar Telescope

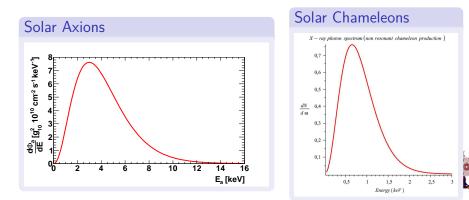
Axions from the sun

- Primakoff effect generates huge axion flux from the Sun
- Axions can reconvert to photons inside large \vec{B} fields
- Energy of solar axions below 15 keV (flux peaks at 3 keV)

Current X-ray Detectors

- Microbulk Micromegas
- X-ray Telescope plus pnCCD (until mid of 2013)
- Prototype SDD

CAST - An axion helioscope

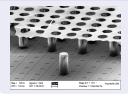

CAST – Data taking

- Magnet can track Sun 2×1.5 h per day
- Otherwise: background data
- Alignment can be checked by Sun- and Moon-filmings

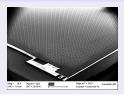
CAST – Future Plans

Future Plans

- Increase sensitivity for axion detection
- Additional search for Solar Chameleons (Dark Energy particles)
- Need detectors with threshold below 1 keV


Integrated Micromegas – InGrid

Chefdeville et al - Nucl. Inst. Meth. A 556(2006), p 490


Micromegas on top of Timepix ASIC

- Fabrication by means of photolithographic postprocessing
- Very good alignment of grid and pixels
- Each avalanche is collected on one pixel
- Detection of single electrons possible

InGrid - SEM

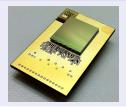
Timepix + InGrid

Production of InGrids

- Single and few chip processing: NIKHEF / Mesa+ (Twente)
- Wafer processing (~ 100 chips at once): in cooperation with IZM Berlin

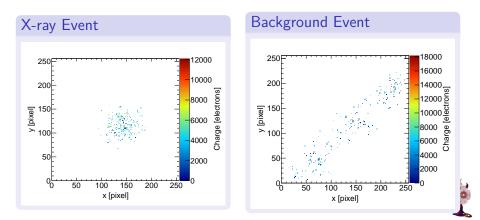
Timepix ASIC

Facts about the Timepix ASIC

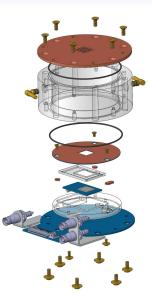

- 256×256 pixels, $55\times 55\,\mu\text{m}^2$ pitch
- $1.4 \times 1.4 \text{ cm}^2$ active area
- Charge sensitive amplifier and discriminator in each pixel, 90 e ENC
- Two modes: Charge or Time

Protection of electronics

- Timepix ASIC is designed for imaging as readout electronics to be bump bonded on a silicon sensor
- Bump bond pads can be used as charge collecting anodes but electronics not designed to survive discharges
- Need resistive protection layer (4 or $8\,\mu m$ silicon nitride) to spread charge in case of discharge

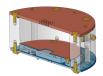


Carrier board



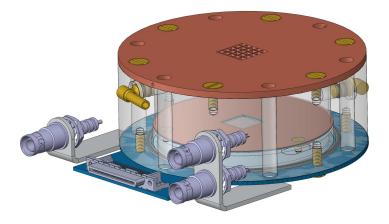
Outstanding Features of an InGrid Based X-ray Detector

- Low energy threshold as single electrons can be observed
- Topological background suppression through event-shape analysis

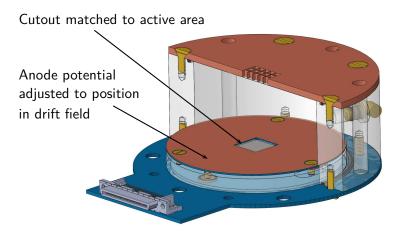


An InGrid based Detector for CAST

Features

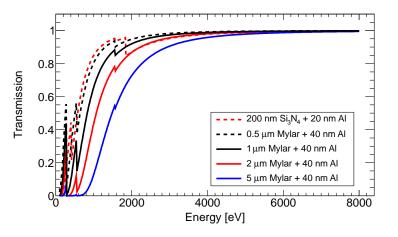

- Modular design based on the 2012 CAST Micromegas
- Body made of plexiglas
- Exchangeable readout module
- Gas: Ar/iC_4H_{10} 97.7/2.3
- X-ray Window made of 2 µm Mylar with copper strongback

Strongback



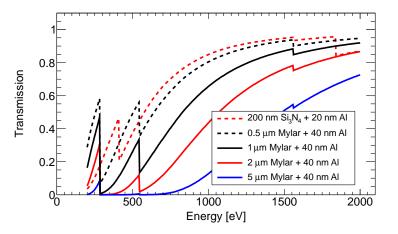
Anode Design - Minimizing Field Distrotions

Anode Design - Minimizing Field Distrotions



Anode Design - Minimizing Field Distrotions

Covering bond pads and wires

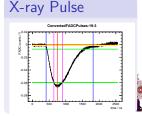


X-ray Window Transparency

X-ray Window Transparency

Readout System

Virtex6 Readout



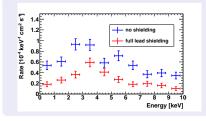
FPGA based readout system

- New readout system for Timepix ASIC has been developed at Bonn
- FPGA based, flexible and customizable
- Full access to firm- and software
- For CAST a system based on a Virtex6 evaluation board is used

Readout of the induced on the grid

- Combined readout of chip and FADC
- Possibility of 'triggered' readout
- Use pulse-shape analysis to improve background suppression
- May serve as future detector upgrade

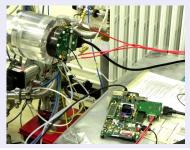
Detector Performance


Energy Resolution

- Resolutions down to $\sigma_E/E \approx 3.85$ % at 5.9 keV were observed in Ar/iC₄H₁₀ 90/10 at optimized settings (Energy determined from pixel counting)
- In Ar/iC_4H_{10} 97.7/2.3 resolutions down to $\sigma_E/E\approx$ 5.33 % at 5.9 keV are possible

Background Discrimination

- Background suppression with LHR method
- Decision based on reference data sets


Background Spectrum

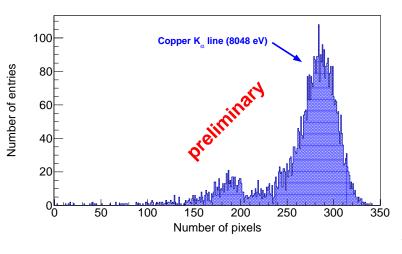
The CAST Detector Lab

InGrid Detector at CDL

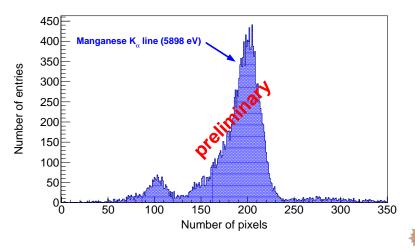
Infrastructure

- X-ray tube with exchangeable targets and filter wheels
- X-ray energies down to few hundred eV
- Vacuum system allowing for differential pumping

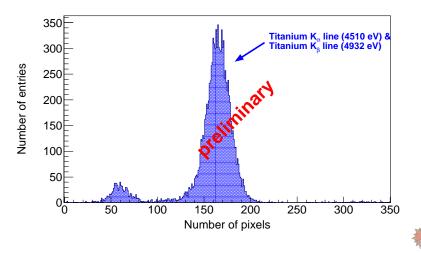
Datataking & First Analysis

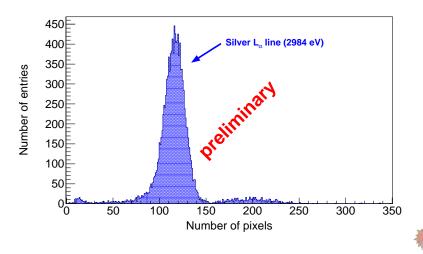

Recording of X-ray Spectra

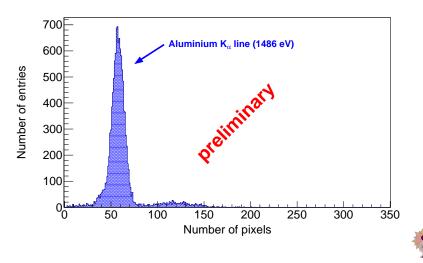
- Different target and filter combinations to produce X-ray lines between 8 keV and 277 eV
- Length of Timepix frames adjusted to get reasonable low rate of double events

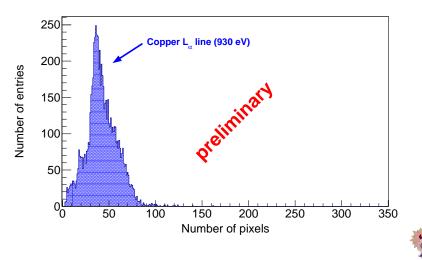

Analysis & Data Selection

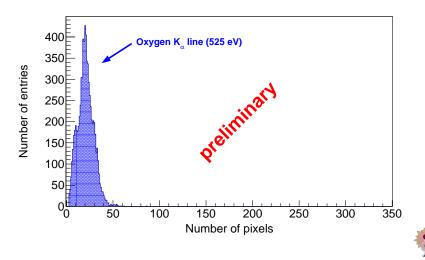
- For first analysis all pixels of a frame are considered
- Algorithm determines long and short axis of events
- Selection of fully contained events by cut on center position
- Removal of double events through cuts on geometrical properties (e.g. excentricity, length, rms,...)
- Energy measured by pixel counting or total charge

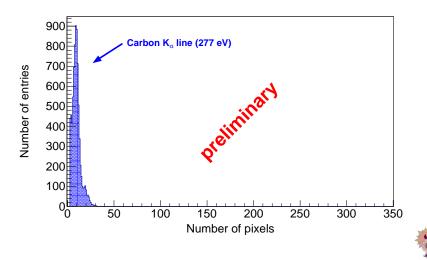


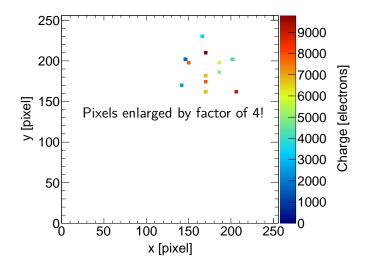


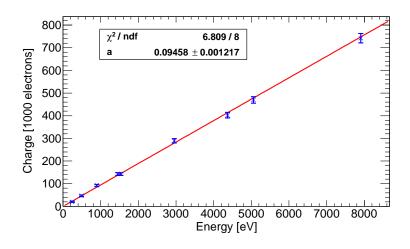








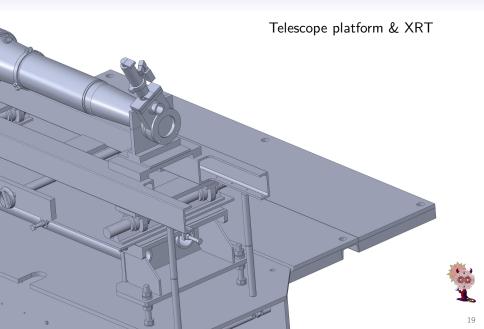




Sample Carbon K_{α} event

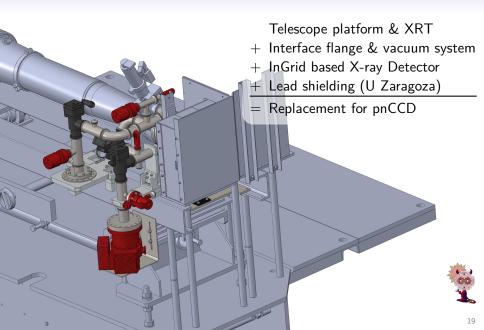
Energy Calibration

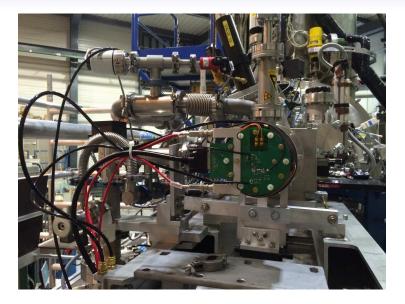
Replacing the pnCCD at the XRT


X-ray Telescope & pnCCD

Interfacing the InGrid Detector with the XRT

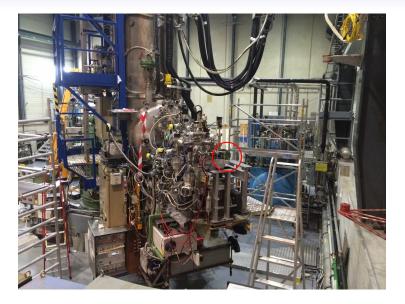
- $\bullet\,$ Very limited space: \sim 300 mm from gate valve to focal plane
- Need space for lead shielding and 55 Fe source manipulator
- Differential pumping necessary to ensure good vacuum in XRT




Telescope platform & XRT + Interface flange & vacuum system

Telescope platform & XRT

- $+\,$ Interface flange & vacuum system
- + InGrid based X-ray Detector



Vacuum System and InGrid Detector @ CAST

Vacuum System and InGrid Detector @ CAST

Conclusion & Outlook

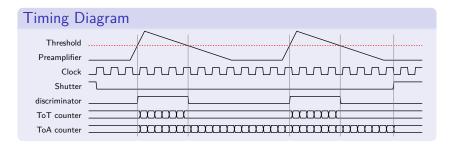
Conclusion

- InGrid based X-ray Detector provides promising candidate for Chameleon search at CAST
- Tests in the CAST Detector Lab demonstrated the performance of the detector
- Detection of carbon K_{α} line at 277 eV is possible
- InGrid based detector has been installed along with the necesary infrastructure at the CAST experiment

Outlook

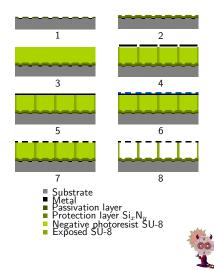
- Search for axions & chameleons with InGrid based detector during CAST run 2014 (starts soon!)
- Work on final implementation of grid signal in readout scheme and optimize setup
- Improve analysis and background rejection

Thanks for your attention!

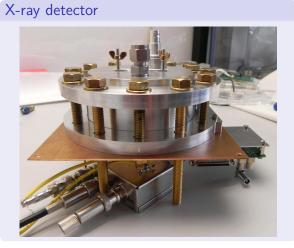


Backup Slides

Timepix ASIC – More Details


Timepix 3

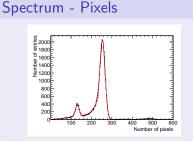
- Has been submitted 2013 First chips are available
- Ability to recognize multihits and to measure Charge and Time simultaneously
- Allows for data driven readout

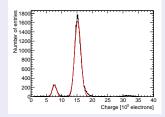


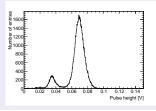
How to build an InGrid on top of a Timepix?

- Starting with bare Timepix
- Deposition of protection layer (4 or 8 µm Si_xN_y)
- Deposition of negative photoresist SU-8 (50 μm)
- Exposure of SU-8
- Sputtering aluminium (1 μm)
- Putting mask on aluminium layer (photoresist)
- Structuring aluminum layer by etching the holes
- Development of SU-8, cleaning of interistitials

Prototype Detector

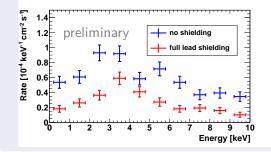

Cathode


Anode


Detector Performance – Tests with ⁵⁵Fe

Spectrum - Charge

Spectrum - Grid

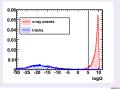


Energy resolution

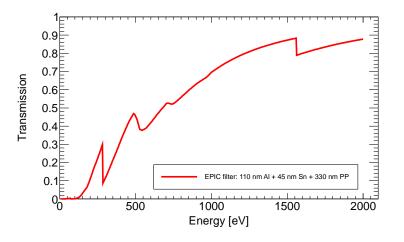
- Ar/iC_4H_{10} 95/5
- Cr foil to suppress 6.1 keV
- Pixels: $\sigma_N/N \approx 5.2$ %
- Charge: $\sigma_Q/Q \approx 6.7 \,\%$
- Grid: $\sigma_U/U \approx 8\%$

Background Rates

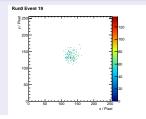
After Likelihood-Ratio based discrimination

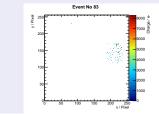


 Reduction should be possible by improvement of algorithm

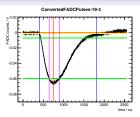

Lead shielding

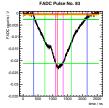
Likelihood-Ratio


European Photon Imaging Camera



Sample Events: X-ray and Cosmic Muon


X-ray Chip Data


Cosmic Chip Data

X-ray Pulse

Cosmic Pulse

FADC Pulse No. 83