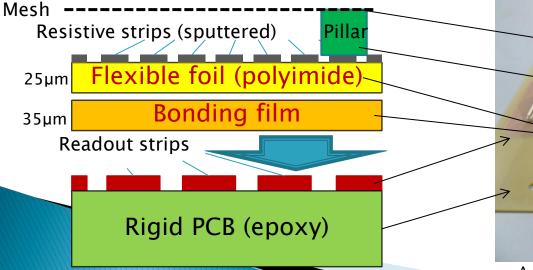

New resistivity control method for carbon sputtering for fast production

<u>Atsuhiko Ochi¹</u>, Yasuhiro Homma¹, Tsuyoshi Takemoto¹, Fumiya Yamane¹, Satoru Yamauchi¹, Tatsuo Kawamoto², Yousuke Kataoka², Tatsuya Masubuchi², Tomoyuki Saito², Shingo Terao², Masahiro Yamatani², Tomohiro Yamazaki²

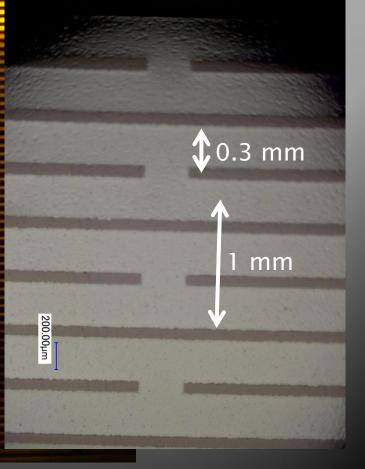
Kobe University¹, Univ. Tokyo ICEPP²


19/06/2014 RD51 mini week@ CERN

Liftoff process using sputtering

Prototype of small MicroMEGAS

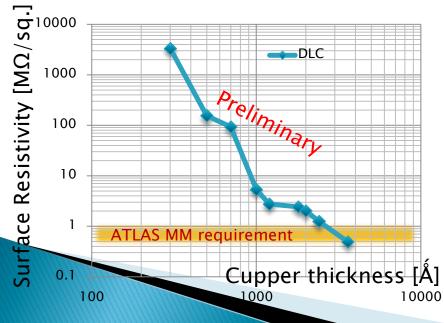
- June, 2013 bulk MM
 - Surface resistivity: $10M\Omega/sq$.
 - With 300Å carbon + 50Å W
- November, 2013 floating mesh
 - Surface resistivity: $500k\Omega/sq$.
 - With 3600Å carbon
- The readout board consists of
 - Readout strips (Rigid PCB).
 - Resistive strip foil (Polyimide film).
 - Fine strip pitch of 200 µm is formed on 25µm polyimide foil.
 - Substrate thickness : 60 µm.

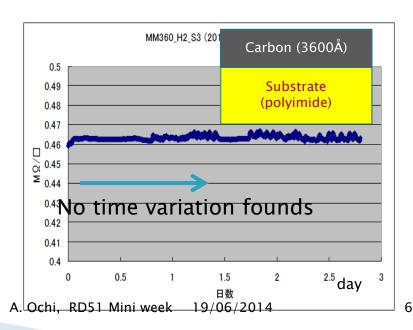

Large resistive strip foil for MSW

866.4mm

425.3mm

Enlarged picture of resistive strip foil

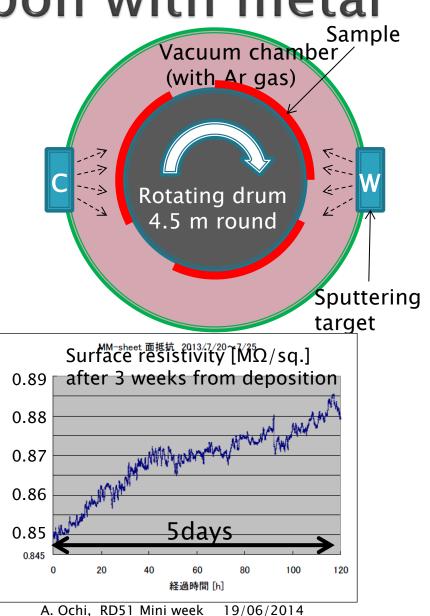

10 mm


A. Ochi, RD51 Mini week 19/06/2014

Resistivity and it's stability

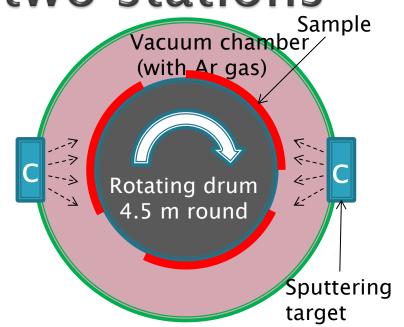
- Resistivity dependence on carbon thickness
 - ∘ 300Å → 2GΩ/sq.
 - 3600Å → 500kΩ/sq.
 - Conductivity is not proportional to the thickness (t < 1000Å)
 - At t > 1000Å, good reproducibility found
- No time variation founds after several days from sputtering

- However, deposition rate is very slow.
 - 500-600Å / hours are maximum rate in industrial chamber.
 - For ATLAS MM, 3600Å = 6hours are needed!!
 - The MSW foils were made by this longtime sputtering.
 - But we need faster way for mass production.

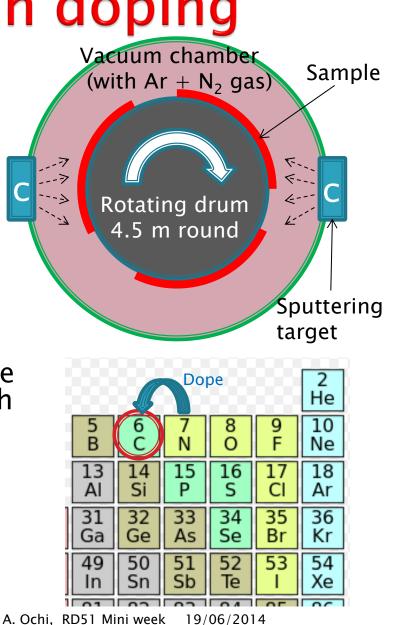


First trial ... Carbon with metal

- The sputtering chamber (in Be-Sputter Co. Ltd,) has two target stations.
 - Different target can be equipped, e.g. Carbon + Metal
 - At the first time, we have tried the Carbon and Tungsten target.
 - W 50Å + C 300Å shows low resistivity (<1M Ω /sq.) with short (~ 30 min.) sputtering time.
 - However, the resistivity is not stable, due to the oxidation of the metal.
- It is not good way for using (thin) metal to control the resistivity.


Carbon (300Å) Tungsten (50Å)

> Substrate (polyimide)


Pure carbon with two stations

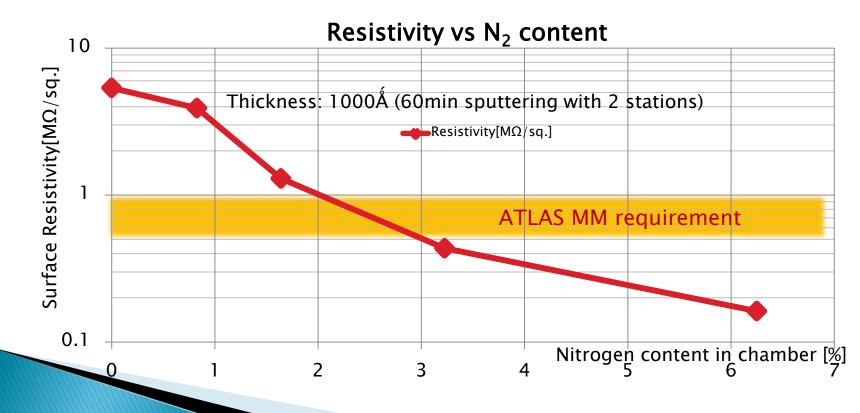
- For preparing double carbon target, we can reduce the sputtering time to half.
 - For 3600Å carbon foil,
 6 hours → 3hours
 - It was great reduction, but we need more ...
 - Can we reduce it to less than 1 hour ?

New idea: Nitrogen doping

- The structure of the sputtered carbon is amorphous diamond like carbon (a-DLC).
- It is thought that the charge carrier is very few in the DLC
- So, I got an idea of nitrogen doping as a supplier of carrier electrons.
 - This is same story as the n-type semiconductor production.
- The nitrogen is easy to introduce into the sputtering chamber with Argon gas.

N₂ doping – first trial (May, 2014)

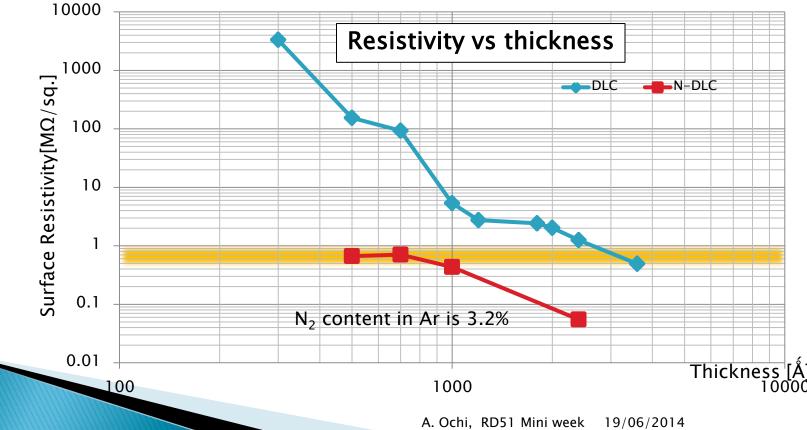
- For the first trial for N2 doping, following two samples were made and tested for 2hour sputtering.
 - 3.2 % N₂ gas in Argon gas
 - 50 % N₂ gas in Argon gas


Results are very interesting

N ₂ content	Thickness	Surface resistivity	
0% (pure Argon)	2100 Å	2.1 M Ω /sq.	
3.2%	2400 Å	$0.055~M\Omega/sq.$	
50%	3900 Å	46 M Ω /sq.	

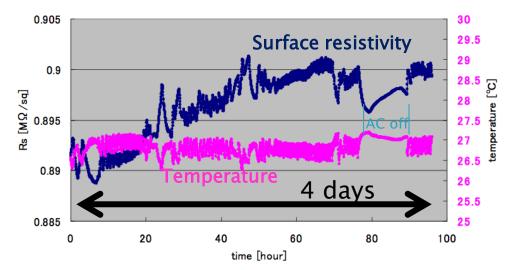
Those trial were followed by systematic test for varying the N₂ (a few %) content and thickness

Resistivity vs N₂ content (June, 2014)


- > The resistivity is strongly reduced by nitrogen doping.
- Surface resistivity of 1000Å foils:
 - Pure carbon \rightarrow 5M Ω /sq.
 - 3.2% N₂ in Ar \rightarrow 400k Ω /sq.

Resistivity vs thickness (June, 2014)

▶ For 3.2% N₂ content foils


- 2400Å → 55kΩ/sq.
- 700Å \rightarrow 700k Ω /sq. (42min. sputter)

Properties of N-doped carbon foil

- 3.2% N-doped with 700Å thickness foil was tested.
- Stability of the resistivity
 - It will be ok
 - ~1% changing is observed in 4 days measurements, 4 days after sputtering).
 - It seems to be the balanced value.
 - We need more measurements
- Stress of the foil
 - Very small, comparing with the thick carbon foil.
- Mechanical and chemical tolerance check should be done
 - Same test as applying to thick(3600Å) foil

For ATLAS MM mass production

- The sputtering process is most time consuming.
 - We need [sputtering time] + 1.5 hours (load and eject the materials, vacuuming etc.) for one batch.
 - 6 foils can be sputtered in one batch.
 - For 2048 foils ... 350 batch needed
- Estimation for production rate

Foil type	Time/batch	Batch/day (day work)	Batch/day (24h work)	Prod. period (day work)	Prod. period (24h work)
Thick carbon	4.5 hours	2	5	8.5 month	3.5 month
N-doped C	2.2 hours	4	10	4.3 month	2 month

Future prospects

- Test, test and test
 - Mechanical tolerance test
 - Peeling test
 - Bending test
 - Chemical tolerance test
 - Tolerance test for PCB related liquid
 - Tomorrow, at Rui's workshop
 - Stability test
 - Resistivity
 - Migration
- Fine pattern making with Liftoff process
- This technique will be used in Module-0 for ATLAS NSW MM
 - Also we will make small prototypes for aging test

Summary

- The new resistivity control technique for carbon sputtered foil is developed using Nitrogen doping
- Very wide range of the surface resistivity is available between 50kΩ/sq. and 4GΩ/sq., in our experience.
- The stability and tolerance test should be continued for N-doped carbon foil.
- N-doping technique is very promising for mass production process of ATLAS MM resistive foils.