First High Resolution Leopard Scans on a Standard GEM Foil Gergő Hamar for the **REGARD Group** from Wigner RCP, Budapest #### **Outline** - Reminder of the LEOPARD System - Recent upgrades - Gold plated GEM foil - Focusing - First images - Hole structures - Edge of the GEM foil - Outlook ## The Leopard System - To examine TGEM microstructure on photo-electron yield for Cherenkov applications - Identify hole-by-hole fluctuations - Input for finetuning simulations - Pulsed UV light focused onto TGEM surface to emitt single electrons (PE yield and gain separable) - Post amplification stage to test single TGEMs - Spot size 70 μm => resonable for TGEM - 3D actuator system Attachment ## Leopard Upgraded - RD51 Common Project See presentation at RD51 Collaboration Meeting at February 2014 by G.Hamar - DAQ: with Raspberry Pi + additional board Capability for 120 kHz event rate (single channel) Command line / GUI; Store spectra; DSP; ... - Upgraded optical setup : pinhole 30 µm reachable - (New actuator system under tests) - Trieste+Budapest common measurements on TGEMs in February 2014 Actuator Trigger in Signal in 2014. June - RD51MW Leopard on GEM - G.Hama ## **Present Working Setup** #### **Standard GEM foil** - Standard gold plated GEM from Rui foil worked excellent (no sparks upto now, not even at operation at effective gain 50) - Resolution better than 20 μm is needed - Used gas : pure methane Leopard on GEM ## **Charge Up** - Serious charge-up effects in TGEMs with both gain and yield variations - GEM illumination with UV LED - Photoelectronyield increases(Au vs CsI?) - Similar effects during scans (observed) #### **Focal Scans** - Focal plane : fine tuning directly from data - 2+1 dim scan in large steps - + later fine steps around the focus ## PE Yield Maps - Successfull high resolution scan on GEM foil! steps of 10 μm in both directions - Uniform yield distribution Scaled Yield at Different GEM Gains Gain = 30 Gain = 10 Gain = 2 #### **Effect of the Drift Field** - GEM vs ThickGEM - Nice plateau with normal drift - Critical points appear only at high reverse fields Zero Drift Large Reversed Drift 1.5 1.5 1.0 -1000 -500 0 500 10 Scaled Yield at Different Drift Fields ## **Edge of the GEM** - First checks on non-trivial structures (would be nice to check around glitches) Still need for optical check, however by eye Rui's GEM was too good :) - Examine area around the edge of the GEM foil - Hole-level quantities (like for TGEMs) ? Thin metal band around the active hole-covered area ## **Edge of the GEM** ## **Edge of the GEM** ## **Defining Holes** - Same methodes as for TGEMs - Define dark points (dark yield is shifted due to non negligible backgroud) - Clusterize dark points (hole candidates) - Define hole area (closest point) - Compute "hole-gain" and/or other hole-level quantities ## **Defining Holes** ## Hole-gain - Hole-gain distribution : sigma < 5% in the sample - Larger gain along the edge (higher surface charge on the metal border?) ### Summary - Successful Leopard scan on GEM foil - Microstructure became visible - Hole-level quantities can be defined - Edge effect and critical points checked - Correlate with optical inspection - Larger area scans - LargePitch / SmallPitch could be studied for operation, variations, Cherenkov applicability... - Ideas / tasks are welcome