

Diffractive and exclusive measurements with the CMS experiment

Gustavo G. da Silveira

gustavo.silveira@cern.ch

Centre for Cosmology, Particle Physics and Phenomenology (CP3) Universite catholique de Louvain (UCL), Belgium

on behalf of the CMS Collaboration

Outline

- CMS detector and capabilities for forward physics;
- Diffractive & Exclusive processes in CMS;
- Measurement of diffractive dissociation cross sections in CMS;
 - Single diffraction (forward gap + no CASTOR);
 - Double diffraction (forward gap + CASTOR) low & high masses;
 - Double diffraction (central gap) high masses.
- Exclusive production of massive electroweak-boson pairs;
 - Measurement of exclusive $\gamma\gamma \rightarrow \mu^{+}\mu^{-}$ at large masses control;
 - Search for exclusive $\gamma\gamma \rightarrow W^+W^-$ production;
 - Limits on anomalous quartic gauge couplings.

Large Hadron Collider

The CMS experiment

Outline

- CMS detector and capabilities for forward physics;
- Diffractive & Exclusive processes in CMS;
- Measurement of diffractive dissociation cross sections in CMS;
 - Single diffraction (forward gap + no CASTOR);
 - Double diffraction (forward gap + CASTOR) low & high masses;
 - Double diffraction (central gap) high masses.
- Exclusive production of massive electroweak-boson pairs;
 - Measurement of exclusive gg → m+m- at large masses control;
 - Search for exclusive gg → W+W- production;
 - Limits on anomalous quartic gauge couplings.

Diffractive processes in CMS

• Diffractive processes are characterized by three different topologies, which can be summarized as follows:

Non-Diffractive	$pp \rightarrow$	X	
Single diffraction	$pp \rightarrow p +$	LRG	+ Y
Double diffraction	$pp \rightarrow X +$	LRG	+ <i>Y</i>
Central diffraction	$pp \rightarrow p + LR$	G + X + L	RG + p

- <u>Large Rapidity Gaps</u>: gap with no hadronic activity, which is the main experimental signature to measure diffractive processes;
- The interaction is medaited by the exchange of a **Pomeron** (*IP*): color-singlet with vacuum quantum numbers;
- Measurements of diffractive cross sections are essential to test|improve the theoretical predictions usually models based on the **Regge theory**:
 - 3/P coupling, flux renormalization, factorization breaking, etc.

Exclusive processes in CMS

• The exclusive production of light and heavy pairs is represented by:

$$pp \to p^{(*)} + (\gamma \gamma, \ell^+ \ell^-, W^+ W^-) + p^{(*)}$$

- Intact protons in the final states, however also accounting for **proton dissociation** p^* ;
- No other particles observed in the central detector apart of the signal;

γγ	tests theoretical predictions for exclusive Higgs production and to measure gluon density at small- x ;
$\ell^+\ell^-$	comparison to precision QED predictions and to study of proton dissociation;
W^+W^-	study of exclusive processes at high mass and constraint of anomalous couplings.

Outline

CMS detector and capabilities for forward physics;

- Diffractive & Exclusive processes in CMS;
- Measurement of diffractive dissociation cross sections in CMS;
 - Single diffraction (forward gap + no CASTOR);
 - Double diffraction (forward gap + CASTOR) low & high masses;
 - Double diffraction (central gap) high masses.
- Exclusive production of massive electroweak-boson pairs;
 - Measurement of exclusive $\gamma\gamma \rightarrow \mu^{+}\mu^{-}$ at large masses control;
 - Search for exclusive $\gamma \gamma \rightarrow W^+W^-$ production;
 - Limits on anomalous quartic gauge couplings.

Event selection

- Low pU data collected by CMS at E_{pp} of 7 TeV in 2010:
 - CASTOR calorimeter only: 16.2 μb⁻¹;
 - $\langle N_{\text{inel,pp}} \rangle / \text{BX} \equiv \mu = 0.14.$

- The online selection considers the combined information from different components:
 - Signal in both Beam Pick-up Timing Experiment (BPTX);
 - Signal in any of the Beam Scintillator Counters (BSC);
 - Combined result: bunch crossing at the IP + activity in the central detector.
- An offline requirements are employed to clean the signal:
 - >25% of high-quality tracks in events with 10+ reco tracks;
 - Reject beam-halo events;
 - Events coinsistent with contamination from noise in HCAL are discarded.

No vertex requirement \downarrow High acceptance for $M_{\chi} \lesssim 100 \text{ GeV}$

Definition of experimental survey

- The topologies can be defined based on the position of the LRG in the central dectetor;
- Forward gap is defined in terms of the **highest** (η_{max}) or **lowest** (η_{min}) pseudorapidity of PF object in the central detector for **single dissociative** events;
 - SD1: gap at η + region;
 - SD2: gap at η region.
- **Double dissociative** events: central gap is defined in terms of the closest-to-zero η of PF object on the **positive** (η^0_{max}) or **negative** (η^0_{min}) η -side of the central detector;

Detector-level distributions

- The gaps are defined as follows:
 - Single dissociation: $\Delta \eta^F \simeq 8.92 \eta_{\text{max}} :: \Delta \eta^F \simeq 8.92 + \eta_{\text{min}}$
 - **Double dissociation**: $\Delta \eta^0 = \eta^0_{\text{max}} \eta^0_{\text{min}}$
- Flattening of the distribution is observed as an effect of diffractive events;

• Central LRG signature is imposed by the cuts: $\eta_{\text{max}} < 1$, $\eta_{\text{min}} > -1$ and $\Delta \eta^0 > 3$

Detector-level distributions

- CMS.
 - DD events where one proton dissociates into a low-mass systems can escape the region of the central detector, or SD-like event;
 - CASTOR is employed to select events with low-mass dissociated systems in the region of -6.6 < η < -5.2;

CASTOR tag: selects events with signal above threshold of 1.48 GeV in at least one of the 16 sectors – summed over the first 5 modules;

SD1-type events will be treated in a control sample, while **SD2-type events** will be used to estimate the diffraction cross secions.

Measurement

• The cross sections are measured based on the fraction of longitudinal momentum loss of the incoming proton:

$$\xi = \frac{M_X^2}{s}$$
 $\Delta \eta^{SD} \simeq -log \xi$

- The same is valid for DD events, although M_X can be the **visible mass** of the dissociated system in the central detector;
- CASTOR has an acceptance of $0.5 < log_{10}(M_Y/GeV) < 1.1$ for the detection of the mass of the hadronic system outside the central detector;
- The variable ξ is determined at detector level in terms of the measured PF object:

$$\xi^{\pm} = \frac{\sum (E^i \mp p_z^i)}{\sqrt{s}}$$

- E, p_z of the i^{th} PF object and both contributions in the $\pm z$ side.
- Due to events that **escape detection** in the central detector, the RECO ξ has to be corrected to match the true ξ : $\log_{10} \xi_{corr} = \log_{10} \xi + C(\xi)$

SD cross sections

• The differential cross sections are measured in bins of ξ :

$$\frac{d\sigma^{SD}}{d\log_{10}\xi} = \frac{N_{noCASTOR}^{data} - (N_{DD} + N_{CD} + N_{ND})^{MC}}{\underset{\text{Acceptance + PU correction}}{\operatorname{Bin width}}} \rightarrow \underset{\text{Bin width}}{\operatorname{Background}}$$

- MBR well describes the falling behavior of data;
- PYTHIA6 and 4C fails;

Total SD cross section at 7 TeV integrated over $-5.5 < \log_{10} \xi < -2.5$:

$$4.27 \pm 0.004$$
(stat.) $^{+0.65}_{-0.58}$ (syst.) mb

for both $pp \rightarrow Xp$ and $pp \rightarrow pY$ (12 < M_X < 394 GeV)

DD cross sections

The differential cross sections for Double Diffraction are measured in both SD2+CASTOR

and DD samples:

$$\frac{d\sigma^{DD}}{d\log_{10}\xi_{X}} = \frac{N_{CASTOR}^{data} - (N_{ND} + N_{SD} + N_{CD})^{MC}}{acc \cdot \mathcal{L} \cdot (\Delta \log_{10}\xi_{X})_{bin}}$$

$$\frac{d\sigma^{DD}}{d\Delta\eta} = \frac{N^{data} - (N_{ND} + N_{SD} + N_{CD})^{MC}}{Acceptance + acc \cdot \mathcal{L} \cdot (\Delta\eta)_{bin}}$$
PU correction

Total DD cross section at 7 TeV integrated over $\Delta \eta > 3$ and $M_{X,Y} > 10$ GeV:

$$0.93 \pm 0.01$$
(stat.) $^{+0.26}_{-0.22}$ (syst.) mb

Error bars: dominated by systematic uncertainties

Trajectory with $\varepsilon = 0.08$ is favored in DD events

Rapidity gap cross section

• The measurement of the forward rapidity gap in terms of the **largest forward rapidity gap** $\Delta \eta^F$;

- Data has to be corrected for background of circulating beams and for bin migration and fake/miss events with the Bayesian unfolding method;
- Unfolded and fully corrected differential cross section of the forward rapidity gap size:

Comparison to ATLAS results

- Hadron level definition in each measurement: CMS: $|\eta| < 4.7$, ATLAS: $|\eta| < 4.9$.
- The CMS results present a good agreement wih ATLAS measuarement within the uncertainties;

Outline

CMS detector and capabilities for forward physics;

- Diffractive & Exclusive processes in CMS;
- Measurement of diffractive dissociation cross sections in CMS;
 - Single diffraction (forward gap + no CASTOR);
 - Double diffraction (forward gap + CASTOR) low & high masses;
 - Double diffraction (central gap) high masses.
- Exclusive production of massive electroweak-boson pairs;
 - Measurement of exclusive $\gamma\gamma \rightarrow \mu^{+}\mu^{-}$ at large masses control;
 - Search for exclusive $\gamma \gamma \rightarrow W^+W^-$ production;
 - Limits on anomalous quartic gauge couplings.

JHEP 07 (2013) 116

Event selection for leptons

- Data collected in 2011 by the CMS detector at 7 TeV:
 - Final state: W+W− → e±μ∓νν to suppress DY bkg;
 - Events with opposite-sign and flavor leptons: 5.05 fb⁻¹;
 - Events with opposite-sign muon: **5.24 fb⁻¹** (control sample).
- Leptons are selected with the requirements:
 - $p_{\rm T}(\ell)$ > 20 GeV and $|\eta(\ell)|$ < 2.4;
 - $m(\ell^+\ell^-) > 20 \text{ GeV}$ and $p_T(\ell^+\ell^-) > 30 \text{ GeV}$.
- Events are selected vertices consistent with two lepton tracks and nothing else;
- **aQGC**: search is performed in the kinematical region with $p_T(\mu e) > 100$ GeV.

Measurement of $\gamma\gamma \rightarrow \mu^+\mu^-$

- The study is performed in **two different kinematic regions** in order to discriminate the dominant contributions of elastic and inelastic interactions;
- **Elastic region** is defined by the exclusivity selection by applying the following kinematical cuts:
 - $p_{\mathrm{T}}(\ell)$ balance below 1 GeV;
 - Back-to-back leptons with $\Delta \phi > 0.9\pi$.
- The regions are defined as follows:

Proton dissociation in inelastic $\gamma\gamma \rightarrow \mu^+\mu^-$

A deficit is observed in data which is not predicted by LPAIR – rescattering effects not included to the predictions;

Region	Data	Simulation	Data/Simulation
Elastic	820	906 ± 9	0.91 ± 0.03
Dissociation	1312	1830 ± 17	0.72 ± 0.02
Total	2132	2736 ± 19	0.78 ± 0.02

- Proton dissociation in LPAIR is loosely constrained experimentally – a normalization factor can be employed for this component;
- We estimate a normalization factor for masses larger than the WW mass:

$$F = \left. rac{N_{\mu\mu \ data} - N_{DY}}{N_{elastic}} \right|_{m(\mu^+\mu^-) > 160 \text{ GeV}}$$

$$= 3.23 \pm 0.53.$$

 This factor is then used to re-scale the signal cross section in order to include the contribution from the proton dissociation.

Exclusive $\gamma\gamma \rightarrow W^+W^-$: theory

• The $\gamma \gamma \to W^+ W^-$ coupling is present in the SM Lagrangian: quartic coupling plus \emph{t} - and \emph{u} -channel W exchange;

Extension to consider the anomalous quartic gauge couplings (aQGC):

$$L_{6}^{0} = \frac{-e^{2}}{8} \frac{a_{0}^{W}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} W^{+\alpha} W_{\alpha}^{-} - \frac{e^{2}}{16 \cos^{2} \Theta_{W}} \frac{a_{0}^{Z}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} Z^{\alpha} Z_{\alpha},$$

$$L_{6}^{C} = \frac{-e^{2}}{16} \frac{a_{C}^{W}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} (W^{+\alpha} W_{\beta}^{-} - W^{-\alpha} W_{\beta}^{+}) - \frac{e^{2}}{16 \cos^{2} \Theta_{W}} \frac{a_{C}^{Z}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} Z^{\alpha} Z_{\beta},$$

AQGC[†] parameters

A: scale for New Physics

Form factors are included in order to tame the rising of the cross section:

$$a_{0,C}^W(W_{\gamma\gamma}^2) = \frac{a_{0,C}^W}{\left(1 + \frac{W_{\gamma\gamma}^2}{\Lambda^2}\right)^p} \xrightarrow{\qquad \qquad W_{\gamma\gamma}: \gamma\gamma \text{ c.m. energy}} p = 2$$
(dipole form factor)

• For a_0^W/Λ^2 , $a_C^W/\Lambda^2 \sim 10^{-5}$: unitairy bound reached, so $\Lambda = 500$ GeV.

† Belanger, G.; Boudjema, F.; Phys. Lett. B 288 (1992) 201

Signal from W+W⁻ $\rightarrow \mu^{\pm}e^{\mp}\nu\bar{\nu}$

Events passing all the requirements:

Signal: 2.2 ± 0.4 evt Bkg: 0.84 ± 0.15 evt

Selection step	Signal $\epsilon \times A$	Events in data
Trigger and preselection	28.5%	9086
$m(\mu^{\pm}e^{\mp}) > 20 \text{GeV}$	28.0%	8200
Muon ID and Electron ID	22.6%	1222
$\mu^{\pm}e^{\mp}$ vertex with 0 extra tracks	13.7%	6
$p_{\mathrm{T}}(\mu^{\pm}e^{\mp}) > 30 \mathrm{GeV}$	10.6%	2

σ · BR with 95% CL: $\sigma(pp \to p^{(*)}W^+W^-p^{(*)} \to p^{(*)}\mu^\pm e^\mp p^{(*)}) = 2.1^{+3.1}_{-1.0} \text{ fb}$

Search for aQGC

The upper limit on the cross section times Branching fraction is found as

$$\sigma(pp \to p^{(*)}W^+W^-p^{(*)} \to p^{(*)}\mu^{\pm}e^{\mp}p^{(*)}) < 10.6 \,\mathrm{fb}$$

Limits on aQGC

Limits 2 orders of magn. more stringent than those from LEP

 $-4.0 \times 10^{-6} < a_0^{\text{W}}/\Lambda^2 < 4.0 \times 10^{-6} \,\text{GeV}^{-2} \,(a_C^{\text{W}}/\Lambda^2 = 0, \text{no form factor}),$

 $-1.5 \times 10^{-5} < a_C^{\text{W}}/\Lambda^2 < 1.5 \times 10^{-5} \,\text{GeV}^{-2}$ $(a_0^{\text{W}}/\Lambda^2 = 0, \text{no form factor}).$

Summary

- CMS has successifully measured exclusive processes at high masses and diffractive events;
- Diffraction cross sections have been measured in CMS:
 - Single Diffraction (-5.5 < log10 ξ < -2.5): 4.27 ± 0.004(stat.) $^{+0.65}_{-0.58}$ (syst.) mb
 - Double Diffraction ($\Delta \eta > 3$, $M_{X,Y} > 10 \text{ GeV}$): 0.93 ± 0.01(stat.) $^{+0.26}_{-0.22}$ (syst.) mb

with results extending previous measurements of ATLAS;

• The search for the exclusive production of W pairs results in **two potential candidates** with observed cross section in agreement with the SM expectation:

$$\sigma(pp \to p^{(*)}W^+W^-p^{(*)} \to p^{(*)}\mu^{\pm}e^{\mp}p^{(*)}) = 2.2^{+3.3}_{-2.0} \,\text{fb},$$

aQGC limits:

$$-0.00015 < a_0^{\rm W}/\Lambda^2 < 0.00015 \,\text{GeV}^{-2} \,\,(a_C^{\rm W}/\Lambda^2 = 0, \Lambda_{\rm cutoff} = 500 \,\text{GeV}),$$
$$-0.0005 < a_C^{\rm W}/\Lambda^2 < 0.0005 \,\text{GeV}^{-2} \,\,(a_0^{\rm W}/\Lambda^2 = 0, \Lambda_{\rm cutoff} = 500 \,\text{GeV}).$$

Two orders of magnitude more stringent than those determined by the LEP and Tevatron results.

Backup slides

The CMS experiment

CASTOR: $5.3 < |\eta| < 6.6$

ZDC: $|\eta| > 8.1$

(not used in these analyses)

SILICON TRACKER

 $(|\eta| < 2.5)$

Overall length : 28.7 m Magnetic field : 3.8 T

HE: $1.3 < |\eta| < 3.0$

HF: $3.0 < |\eta| < 5.2$

Correction factor for RECO ξ

• The reconstructed ξ has to be corrected due to the events that **escape detection** in the central detector and particles below the PF object threshold:

$$\xi^{\pm} = \frac{\sum (E^i \mp p_z^i)}{\sqrt{s}} \longrightarrow C(\xi) \longrightarrow \xi = \frac{M_X^2}{s}$$

• The correction factor $C(\xi)$ is defined as: $\log_{10} \xi_{corr} = \log_{10} \xi + C(\xi)$

PYTHIA8-MBR (with renormalized flux) shows better results than PYTHIA8-4C.

Elastic region for $\gamma\gamma \rightarrow \mu^+\mu^-$

- G.
 - Although a good agreement with the MC predictions in the elastic region, the background from muon pairs produced via Drell-Yan is significative;
 - The mass region of Z-boson resonance is investigated.

The contribution from both regions can be accounted in Data and MC:

Region	Data	Simulation	Data/Simulation
Elastic	820	906 ± 9	0.91 ± 0.03
Dissociation	1312	1830 ± 17	0.72 ± 0.02
Total	2132	2736 ± 19	0.78 ± 0.02

Invariant mass for $\gamma\gamma \rightarrow \mu^+\mu^-$

Acoplanarity for $\gamma\gamma \rightarrow \mu^+\mu^-$

Transverse momentum for $\gamma\gamma \rightarrow \mu^+\mu^-$

Transverse momentum for $\gamma\gamma \rightarrow \mu^+\mu^-$

Efficiencies for $\gamma\gamma \rightarrow W^+W^-$

Selection step	Signal $\epsilon \times A$	Visible cross section (fb)	Events in data
Trigger and preselection	28.5%	1.1	9086
$m(\mu^{\pm}e^{\mp}) > 20 \text{GeV}$	28.0%	1.1	8200
Muon ID and Electron ID	22.6%	0.9	1222
$\mu^{\pm}e^{\mp}$ vertex with zero extra tracks	13.7%	0.6	6
$p_{\mathrm{T}}(\mu^{\pm}\mathrm{e}^{\mp}) > 30\mathrm{GeV}$	10.6%	0.4	2

Backgrounds for $\gamma\gamma \rightarrow W^+W^-$

Region	Background process	Data	Sum of backgrounds	$\gamma\gamma \to W^+W^- \text{ signal}$
1	Inclusive W^+W^-	43	46.2 ± 1.7	1.0
2	Inclusive Drell-Yan $\tau^+\tau^-$	182	256.7 ± 10.1	0.3
3	$\gamma\gamma \to \tau^+\tau^-$	4	2.6 ± 0.8	0.7

Systematic uncertainties for $\gamma\gamma \rightarrow W^+W^-$

	Signal uncertainty	Background uncertainty (events)
Trigger and lepton identification	4.2%	0.02
Luminosity	2.2%	0.005
Vertexing efficiency	1.0%	0.005
Exclusivity and pileup dependence	10.0%	0.05
Proton dissociation factor	16.3%	0.02

Missing E_T for $\gamma\gamma \rightarrow W^+W^-$

Efficiencies in aQGC

$a_0^{ m W}/\Lambda^2$	$[GeV^{-2}]$	0	2×10^{-4}	-2×10^{-4}	7.5×10^{-6}	0
$a_C^{ m W}/\Lambda^2$	$[\text{GeV}^{-2}]$	0	0	-8×10^{-4}	0	2.5×10^{-5}
Λ	[GeV]		500	500	No form factor	No form factor
Efficience	cy	$30.5 \pm 5.0\%$	$29.8 \pm 2.1\%$	$31.3 \pm 1.8\%$	$36.0 \pm 1.7\%$	$36.3 \pm 1.8\%$