

Probing $\gamma\gamma XX$ anomalous gauge couplings with proton tagging at the LHC

Low x conference 2014 @ Kyoto, Japan

Matthias Saimpert¹
E. Chapon, S. Fichet, G. von Gersdorff,
O. Kepka, B. Lenzi, C. Royon¹

¹CEA Saclay - Irfu/SPP

June 20th 2014

C. Royon, O. Kepka, Phys. Rev. D 78 (2008)

E. Chapon, C. Royon, O. Kepka, Phys. Rev. D 81 (2010)

S. Fichet et al, Phys. Rev. D 89 (2014)

Forward proton detectors at the LHC

The ATLAS Forward Physics (AFP) and the Precision Proton Spectrometer (PPS, CMS/TOTEM) upgrade projects

Exclusive production via photon induced processes

- All particles at the final state are detected: two protons in the forward detectors and two high energy particles in the central detector → strong kinematics constraints
- Requirement of two intact protons + kinematics constraints → strong background reduction

Exclusive production via photon induced processes

- All particles at the final state are detected: two protons in the forward detectors and two high energy particles in the central detector → strong kinematics constraints
- Requirement of two intact protons + kinematics constraints → strong background reduction
- $\gamma\gamma$, WW, ZZ final states ideal to study anomalous quartic gauge couplings (aQGC)
- aQGC important for various physics topics: electroweak symmetry breaking, extra-dimension models, ...

Exclusive production via photon induced processes

- All particles at the final state are detected: two protons in the forward detectors and two high energy particles in the central detector → strong kinematics constraints
- Requirement of two intact protons + kinematics constraints → strong background reduction
- $\gamma\gamma$, WW, ZZ final states ideal to study anomalous quartic gauge couplings (aQGC)
- aQGC important for various physics topics: electroweak symmetry breaking, extra-dimension models, ...
- Drawback: smaller cross-sections
 (intact protons must be in the acceptance of the forward detectors)

$WW\gamma\gamma$ and $ZZ\gamma\gamma$ anomalous couplings

C. Royon, O. Kepka, Phys. Rev. D **78** (2008)

E. Chapon, C. Royon, O. Kepka, Phys. Rev. D 81 (2010)

dimension 6 operators parametrized with 4 different parameters

$$\mathcal{L}_{6}^{0} \sim \frac{-e^{2}}{8} \frac{a_{0}^{W}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} W^{+\alpha} W_{\alpha}^{-} - \frac{e^{2}}{16 \cos^{2}(\theta_{W})} \frac{a_{0}^{Z}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} Z^{\alpha} Z_{\alpha}$$

$$\mathcal{L}_{6}^{C} \sim \frac{-e^{2}}{16} \frac{a_{C}^{W}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} (W^{+\alpha} W_{\beta}^{-} + W^{-\alpha} W_{\beta}^{+})$$

$$- \frac{e^{2}}{16 \cos^{2}(\theta_{W})} \frac{a_{C}^{Z}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} Z^{\alpha} Z_{\beta}$$

- Only the leptonic decays of the heavy bosons are considered as final states (clean signal)
- **Background considered:** ND WW/ZZ production, dilepton photoproduction, DPE dilepton, DPE WW/ZZ
- Generation and simulation performed with the Forward Physics MC generator (FPMC) interfaced with the fast simulation of the ATLAS detector (ATLFast++ package)

ATLAS full simulation also performed to probe pile-up effects and gave similar results

$WW\gamma\gamma$ and $ZZ\gamma\gamma$ anomalous couplings

ATLAS fast simulation study

E. Chapon, C. Royon, O. Kepka, Phys. Rev. D 81 (2010)

Dealing with pile-up at the LHC

ATLAS full simulation study

- The LHC is operated at very high luminosity → high event multiplicites in a single bunch-crossing (pile-up)
- Use of the forward timing detectors to constrain the vertex of the interaction dependant on the timing detectors resolution
- Cut on the number of tracks fitted to the primary vertex very efficient to remove remaining pile up after requesting a high mass object to be produced

$WW\gamma\gamma$ and $ZZ\gamma\gamma$ sensitivities

E. Chapon, C. Royon, O. Kepka, Phys. Rev. D 81 (2010)

- **Recent papers from DØ and CMS** for $WW\gamma\gamma$ with reach of the order of 10^{-4} GeV⁻² (CMS-PAS-FSQ-12-010) Former reference (P. J. Bell, arXiv:0907.5299): sensitivites predicted at the LHC of the order of a few 10^{-4} GeV⁻²
- Sensitivities predictions with AFP (30 and 200 fb⁻¹) improvement by a factor $\simeq 100$

		limits $[10^{-6}\mathrm{GeV^{-2}}]$			limits [10 ⁻⁶ GeV ⁻²]				
	form factor	$ a_0^W/\Lambda^2 $	$ a_C^W/\Lambda^2 $	$ a_0^Z/\Lambda^2 $	$ a_C^Z/\Lambda^2 $	$ a_0^W/\Lambda^2 $	$\left a_C^W/\Lambda^2\right $	$\left a_0^Z/\Lambda^2\right $	$\left a_C^Z/\Lambda^2\right $
95% c.1 {	$\Lambda_{cut} = \infty$	1.2	4.2	2.8	10	0.7	2.4	1.1	4.1
95% 6.1	$\Lambda_{cut} = \infty$ $\Lambda_{cut} = 2 \text{TeV}$	2.6	9.4	6.4	24	1.4	5.2	2.5	9.2
3σ evidence {	$\Lambda_{cut} = \infty$ $\Lambda_{cut} = 2 \text{ TeV}$	1.6	5.8	4.0	14	0.85	3.0	1.6	5.7
30 evidence ($\Lambda_{cut} = 2 \text{TeV}$	3.6	13	9.0	34	1.8	6.7	3.5	13
5σ discovery $\Big\{$	$\Lambda_{cut} = \infty$ $\Lambda_{cut} = 2 \text{ TeV}$	2.3 5.4	9.7	6.2	23	1.2	4.3	4.1	8.9
, , , , , ,	$\Lambda_{cut} = 2 \mathrm{TeV}$	5.4	20	14	52	2.7	9.6	5.5	20

$\gamma\gamma\gamma\gamma$ anomalous couplings

- Direct coupling absent from the SM*
 *loop induced production measurable at the LHC with heavy ions
 (d'Enterria et al. Phys. Rev. Lett. 111 (2013) 080405)
- No constraints from collider experiments

$\gamma\gamma\gamma\gamma$ anomalous couplings

- Direct coupling absent from the SM*
 *loop induced production measurable at the LHC with heavy ions
 (d'Enterria et al. Phys. Rev. Lett. 111 (2013) 080405)
- No constraints from collider experiments
- Small couplings \rightarrow high luminosity required 300 fb⁻¹ of data expected at the LHC at $\sqrt{s}=14$ TeV with $\mu>50$
- **Huge background** if only 2 high energy γ required (SM $\gamma\gamma$ production + fakes from electrons and jets)

$\gamma\gamma\gamma\gamma$ anomalous couplings

- Direct coupling absent from the SM*

 *loop induced production measurable at the LHC with heavy ions
 (d'Enterria et al. Phys. Rev. Lett. 111 (2013) 080405)
- No constraints from collider experiments
- Small couplings \rightarrow high luminosity required 300 fb⁻¹ of data expected at the LHC at $\sqrt{s}=14$ TeV with $\mu>50$
- **Huge background** if only 2 high energy γ required (SM $\gamma\gamma$ production + fakes from electrons and jets)
- Additional requirement of two intact protons with forward detectors highly suppresses the background

Operators of the $\gamma\gamma\gamma\gamma$ couplings

R.S. Gupta, Phys. Rev. D **85** (2012) 014006

S. Fichet and G. von Gersdorff, arXiv:1311.6815

 $\sqrt{\hat{s}_{\gamma\gamma}} << \Lambda$, effective field theory assumption

$$L_{4\gamma}=\zeta_1^{\gamma}F_{\mu\nu}F^{\mu\nu}F_{\rho\sigma}F^{\rho\sigma}+\zeta_2^{\gamma}F_{\mu\nu}F^{\nu\rho}F_{\rho\sigma}F^{\sigma\mu} \text{ (dimension 8)}$$

Operators of the $\gamma\gamma\gamma\gamma$ couplings

R.S. Gupta, Phys. Rev. D 85 (2012) 014006

S. Fichet and G. von Gersdorff, arXiv:1311.6815

$$L_{4\gamma} = \zeta_1^{\gamma} F_{\mu\nu} F^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} + \zeta_2^{\gamma} F_{\mu\nu} F^{\nu\rho} F_{\rho\sigma} F^{\sigma\mu} \text{ (dimension 8)}$$

For low new physics masses, production threshold can be reached → use of a form factor (f.f.) at the amplitude level

We use
$$f.f=rac{1}{1+(rac{\hat{s}_{\gamma\gamma}}{1+(rac{\hat{s}_{\gamma\gamma}}{1+\alpha})^2}}$$
 with $\Lambda'=1$ TeV $\simeq\sqrt{\hat{s}_{\gamma\gamma,max}}/2$

Unitary requires $\zeta_i < 10^{-10} \text{ GeV}^{-4} \approx 10^4 \text{ higher than our sensitivity limit}$

Operators of the $\gamma\gamma\gamma\gamma$ couplings

R.S. Gupta, Phys. Rev. D **85** (2012) 014006

S. Fichet and G. von Gersdorff, arXiv:1311.6815

$$L_{4\gamma} = \zeta_1^{\gamma} F_{\mu\nu} F^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} + \zeta_2^{\gamma} F_{\mu\nu} F^{\nu\rho} F_{\rho\sigma} F^{\sigma\mu} \text{ (dimension 8)}$$

For low new physics masses, production threshold can be reached → use of a form factor (f.f.) at the amplitude level

We use
$$f.f = \frac{1}{1 + (\frac{\hat{s}_{\gamma\gamma}}{\Lambda'^2})^2}$$
 with $\Lambda' = 1$ TeV $\simeq \sqrt{\hat{s}_{\gamma\gamma,max}}/2$
Unitary requires $\zeta_i < 10^{-10}$ GeV⁻⁴, $\simeq 10^4$ higher than our sensitivity limit

- The signal showed in the plots of this presentation are for a signal with $\zeta_1 > 0$ and $\zeta_2 = 0$ and with f.f. ζ_1 and ζ_2 have the same angular behaviour
- A table of final sensitivities for both ζ_1 and ζ_2 , with and without f.f are given at the end of the presentation

- Evaluate the LHC potential to probe 4γ couplings using proton tagging and the effective field theory
 - 4γ aQGC operators implemented in the **FPMC** generator
 - Rough simulation of the detector effects (see \$12)
 - Pile-up simulation with Pythia8 minimum bias events
 - Background estimation (expected to be very small)
 - Sensitivities calculation: S/\sqrt{B}
 - 2 scenarios were considered
 - LHC full stat (ATLAS or CMS) : 300 fb $^{-1}$, $\mu = 50$
 - HL-LHC (ATLAS) : 3000 fb⁻¹, $\mu = 200$

- **4** γ aQGC operators implemented in the **FPMC generator**
- Rough simulation of the detector effects (see \$12)
- Pile-up simulation with Pythia8 minimum bias events
- Background estimation (expected to be very small)
- Sensitivities calculation: S/\sqrt{B}
- 2 scenarios were considered
 - LHC full stat (ATLAS or CMS) : 300 fb $^{-1}$, $\mu=50$
 - HL-LHC (ATLAS) : 3000 fb $^{-1}$, $\mu = 200$
- Implementation of generic **new heavy-charged fermions/vectors** contributions to the 4γ couplings in FPMC (full amplitude)

- lacksquare 4 γ aQGC operators implemented in the **FPMC** generator
- Rough simulation of the detector effects (see \$12)
- Pile-up simulation with Pythia8 minimum bias events
- Background estimation (expected to be very small)
- Sensitivities calculation: S/\sqrt{B}
- 2 scenarios were considered
 - LHC full stat (ATLAS or CMS) : 300 fb $^{-1}$, $\mu = 50$
 - HL-LHC (ATLAS) : 3000 fb⁻¹, $\mu = 200$
- Implementation of generic **new heavy-charged fermions/vectors** contributions to the 4γ couplings in FPMC (full amplitude)
- **Extra:** update of the exclusive $\gamma\gamma$ SM production in FPMC includes the **W** loop contribution and the fermion masses

SM QED exclusive $\gamma\gamma$ production (preliminary)

- Mass of the fermions taken into account
- W loop non negligeable for $p_{T,\gamma} > 50$ GeV
- QCD and DPE contributions to be added
- Same plot against the diphoton mass (in progress)

- Analysis at particle level taking into account main detector effects
 - Estimation of γ conversion rates (η function), fake photon rates, reconstruction efficiency (p_T functions) from ECFA ATLAS studies
 - **Smearing** of 1% in γ energies, 0.001 in η and ϕ (absolute), 2% for ξ to mimic detector resolution
 - Requirement of at least one converted photon \rightarrow constraint on the γ vertex, possibility to combine with forward proton timing measurement
 - Selection on high p_T^{γ} , high diphoton mass, $\Delta \Phi^{\gamma\gamma}$, match proton missing/ $\gamma\gamma$ mass (summary \$18)

- Estimation of γ conversion rates (η function), fake photon rates, reconstruction efficiency (ρ_T functions) from ECFA ATLAS studies
- **Smearing** of 1% in γ energies, 0.001 in η and ϕ (absolute), 2% for ξ to mimic detector resolution
- Requirement of at least one converted photon \rightarrow constraint on the γ vertex, possibility to combine with forward proton timing measurement
- Selection on high p_T^{γ} , high diphoton mass, $\Delta \Phi^{\gamma\gamma}$, match proton missing/ $\gamma\gamma$ mass (summary \$18)

Final outputs

- 5σ and 95% C.L sensitivities on the $\gamma\gamma\gamma\gamma$ couplings effective field theory
- M-Q exclusion plane for generic exotic fermions/vectors full amplitude

Backgrounds (FPMC, ExHuME)

Exclusive QED (FPMC)

Pile-up backgrounds (HERWIG 6.5)

Dijet

Drell-Yan

Diphoton

+ protons generated from **minimum bias events** (Pythia 8)

transported to the forward detectors through the LHC magnets with FPTracker/MADX

Mass and p_T balance distribution of signal and backgrounds

smearing, fakes and reconstruction factors, \geq 1 converted γ applied

$$0.015 < \xi < 0.15, |\eta| < 2.37, \ p_{T1.2}^{\gamma} > 50 \, {
m GeV} \, {
m ONLY}$$

if we request also $m_{\gamma\gamma} >$ 600 GeV and $p_{71,2} >$ 200, 100 GeV

- By requesting $m_{\gamma\gamma} > 600$ GeV (left), **Only pile-up** backgrounds remain
- p_T ratio distribution after p_T and $m_{\gamma\gamma}$ cuts (right) provides another efficient cut (exclusive process)
- $\Delta \phi > \Pi$ -0.01 also applied later in the selection

Use of the forward detector ξ measurement

smearing, fakes and reconstruction factors, \geq 1 converted γ applied

$$0.015 < \xi < 0.15, |\eta| < 2.37, m_{\gamma\gamma} > 600$$
 GeV, $p_{71,2} > 200, 100$ GeV

- **Missing proton mass** $\sqrt{\xi_1\xi_2s}$ matches $m_{\gamma\gamma}$ for the signal A mass window of 3% (= resolution) is required in the event selection
- Same effect with **rapidity variables** $|y_{\gamma\gamma} y_{pp}| < 0.03$ with $y_{pp} = (0.5 * ln(\frac{\xi_1}{\xi_2}))$ is applied
- The small width of the signal distributions is due to the smearing applied to simulate detector effects

Very efficient cuts due to very good ξ resolution, **absolutely needed in order** to suppress the pile-up background

Expected events for $\zeta_1^{\gamma} = 2 \cdot 10^{-13} \cdot \text{GeV}^{-4}$

 $\sqrt{s} = 14$ TeV, L = 300 fb⁻¹, at least one converted γ

Cut / Process	Signal	Excl.	DPE	e ⁺ e ⁻ ,dijet + pu	$\gamma\gamma$ + pu
$0.015 < \xi < 0.15, p_{\text{T1},2} > 50 \text{GeV}$	20.8	3.7	48.2	2.8 · 10 ⁴	1.0 · 10 ⁵
$p_{\rm T1} > 200 {\rm GeV}, p_{\rm T2} > 100 {\rm GeV}$	17.6	0.2	0.2	1.6	2968
$m_{\gamma\gamma} > 600 \text{GeV}$	16.6	0.1	0	0.2	1023
$p_{\rm T2}/p_{\rm T1} > 0.95, \Delta\phi > \pi - 0.01$	16.2	0.1	0	0	80.2
$\sqrt{\xi_1\xi_2s}=m_{\gamma\gamma}\pm 3\%$	15.7	0.1	0	0	2.8
$ v_{\alpha'\alpha'} - v_{\alpha\alpha} < 0.03$	15.1	0.1	1 0	0	0

- Signal selection efficiency > 70% (after preselection)
 - Acceptance increased by a factor 3-4 when adding all unconverted photons (with EM "pointing")

Expected events for $\zeta_1^{\gamma} = 2 \cdot 10^{-13} \cdot \text{GeV}^{-4}$

 $\sqrt{s} = 14$ TeV, L = 300 fb⁻¹, at least one converted γ

Cut / Process	Signal	Excl.	DPE	e ⁺ e ⁻ ,dijet + pu	$\gamma\gamma$ + pu
$0.015 < \xi < 0.15, p_{\text{T1},2} > 50 \text{GeV}$	20.8	3.7	48.2	2.8 · 10 ⁴	1.0 · 10 ⁵
$p_{\rm T1} > 200 {\rm GeV}, p_{\rm T2} > 100 {\rm GeV}$	17.6	0.2	0.2	1.6	2968
$m_{\gamma\gamma} > 600 \text{GeV}$	16.6	0.1	0	0.2	1023
$p_{\rm T2}/p_{\rm T1} > 0.95, \Delta\phi > \pi - 0.01$	16.2	0.1	0	0	80.2
$\sqrt{\xi_1 \xi_2 s} = m_{\gamma \gamma} \pm 3\%$	15.7	0.1	0	0	2.8
$ y_{\gamma\gamma} - y_{pp} < 0.03$	15.1	0.1	0	0	0

- Signal selection efficiency > 70% (after preselection)
 - Acceptance increased by a factor 3-4 when adding all unconverted photons (with EM "pointing")
- Background completely suppressed thanks to forward detectors ∈ measurement
 - Very high significance per observed event
 - 1.5 background events expected at μ = 200 Robust analysis, good background control
 - proton time-of-flight **not used**Possible additional rejection factor of 40 at μ = 50

Final discovery (5 σ) and exclusion (95% CL) sensitivities on ζ_1 and ζ_2

S. Fichet, G. von Gersdorff, O. Kepka, B. Lenzi, C. Royon, M. Saimpert, Phys. Rev. D **89** (2014)

Luminosity pile-up (µ)	300 fb ⁻¹	300 fb ⁻¹	300 fb ⁻¹	3000 fb ⁻¹
coupling	\geq 1 conv. γ	\geq 1 conv. γ	$ $ all γ	all γ
(GeV ⁻⁴)	5 σ	95% CL	95% CL	95% CL
ζ ₁ f.f.	1 · 10 ⁻¹³	9 · 10 ⁻¹⁴	5 · 10 ⁻¹⁴	2.5 · 10 ⁻¹⁴
ζ_1 no f.f.	$3.5 \cdot 10^{-14}$	2.5 · 10 ⁻¹⁴	1.5 · 10 ⁻¹⁴	7 · 10 ⁻¹⁵
ζ_2 f.f.	2.5 · 10 ⁻¹³	1.5 · 10 ⁻¹³	1 · 10 ⁻¹³	4.5 · 10 ⁻¹⁴
ζ_2 no f.f.	7.5 · 10 ⁻¹⁴	5.5 · 10 ⁻¹⁴	3 · 10 ⁻¹⁴	1.5 · 10 ⁻¹⁴

- A large panel of extra-dimension models can be probed in the multi-TeV range
- The form factor is not needed anymore for a new physics scale **beyond** ≈ **2 TeV**because of the forward detector acceptance (see slide 9)

Full amplitude computation for generic heavy charged fermions/vectors contributions (preliminary)

- The existence of new heavy charged particles will enhance the $\gamma\gamma\gamma\gamma$ coupling at high mass via loops
- This enhancement can be parametrized by **only the** mass and the effective charge $Q_{eff} = Q.N^{1/4}$, N multiplicity
- Generic implementation for fermions and vectors implemented in FPMC
- Paper in preparation, preliminary M-Q_{eff} exclusion plane

Higher spin resonances and link with EFT (preliminary)

- Dots mark generic exotic charged particles of **high spin** with M = 1 TeV, $Q_{eff} = 3$ (300 fb⁻¹, all γ , $\mu = 50$)
- \blacksquare 5 σ sensitivity is represented by the white region

Conclusion

- Forward proton tagging at the LHC seems promising to probe **anomalous** $\gamma\gamma XX$ **Gauge Couplings**
 - proton tagging associated by high energy object detections in the central EM calorimeter allow to highly suppress the background
 - $WW\gamma\gamma$ and $ZZ\gamma\gamma$ couplings sensitivity improvement by a factor > **100**
 - $\gamma\gamma\gamma\gamma$ couplings: sensitivities around $10^{-13} 10^{-14}$ GeV⁻⁴, down to $7 \cdot 10^{-15}$ GeV⁻⁴ → allows to probe directly a large panel of new physics models (no previous constraints from collider experiments)
- γγγγ coupling: a channel probing exotic heavy charged vectors/fermions in a completely model-independent way
 - sensitive for vectors (fermions) up to 1400 (920) GeV (Preliminary result)

Probing $\gamma\gamma XX$ anomalous gauge couplings with proton tagging at the LHC

Back-up

Matthias Saimpert¹
E. Chapon, S. Fichet, G. von Gersdorff,
O. Kepka, B. Lenzi, C. Royon¹

¹CEA Saclay - Irfu/SPP

June 20th 2014

Integrated total cross-section against couplings for anomalous $\gamma\gamma\gamma$ couplings

Form factor applied

Effective Field Theory cross-section of the 4γ couplings (G. Von Gersdorff)

EFT of 4 Photon Interactions

- ▶ Focus on AAAA (AAZZ and AAWW see [Chapon et al '12])
- ▶ EFT for 4-photon interaction contains two dim-8 structures

$$\mathcal{L}_{4\gamma} = \zeta_1 \left(F_{\mu\nu} F^{\mu\nu} \right)^2 + \zeta_2 F_{\mu\nu} F^{\nu\rho} F_{\rho\sigma} F^{\sigma\mu}$$

▶ Cross section has a simple form

$$\frac{d\sigma}{d\Omega} = \frac{1}{16\pi^2 s} (s^2 + t^2 + st)^2 \left[48\zeta_1^2 + 40\zeta_1\zeta_2 + 11\zeta_2^2 \right]$$

- Unitarity breaks down for $\zeta s^2 \gtrsim 2\pi$
- ▶ Demanding unitarity for LHC energies $\Rightarrow \zeta_i \le 10^{-10} \text{GeV}^{-4}$
- In explicit models EFT breaks down before that!
- ▶ LHC sensitivities to ζ_i are ~10⁴⁻⁵ better than unitarity bound

New physics contributions to 4γ couplings

New charged particles via loops

- Effective coupling only depends on the mass, charge and spin : $\zeta_i^{\gamma} \propto c_i^s Q^4 m^{-4}$
- Example: top partners

New neutral particles at tree level

- Effective coupling depends on mass, spin and the non-renormalizable $\gamma\gamma X$ coupling $\zeta_i^{\gamma} \propto b_i^s f^{-2} m^{-2}$
- Example: KK gravitons, dilaton (warped extra-dimension)

if coupling \simeq TeV and $m_{K\!K} \simeq$ few TeV, $\zeta_i^\gamma \simeq 10^{-14}\text{-}10^{-13}$ GeV $^{-4}$ achievable, which we are sensitive

Where does proton tagging do better?

- Proton tagging allows a very high background rejection at the cost of a smaller cross-section
 - A single observation has a high significance
 - Ideal to probe small deviations from the Standard Model like aQGC
 ex: new charged particles via loops, ADD gravity effects, ...
 - Interesting "subleading" constraints on resonances searches at tree level
 ex: new neutral particles at tree level
 - Very difficult to quantify precisely the improvements compared to the central detector alone (in progress)
- We reach sensitivities allowing to probe directly a large class of new models
 - **Extra-dimensions:** KK gravitons, dilaton, high κ untested domain (Randall-Sundrum model)
 - Strongly-interacting composite states, monopoles: generic searches of new heavy charged particles

Conversion, fake and efficiency reconstruction rates

- Inputs from the ECFA ATLAS studies
- **Photon conversion factors:** 15% in the barrel, 30% in the end-caps
- Photon and electron reconstruction efficiency: $Eff(p_T) = 0.76 1.98 \ exp^{\frac{-p_T}{16.1(GeV)}}$
- **Photon fake factors:** 1% for electron European Strategy studies
- **Fake photon p**_T **for jets:** gaussian draw (Mean=75%, σ =13%) on the jet p_T and use of

$$Eff_{fake}(p_T) = 0.0093 \ exp^{\frac{-min(p_T, 200 GeV)}{17.5(GeV)}}$$

almost no fake γ from jets at very high p_T

Forward detectors measurements

- Proton missing mass measurement with 3% resolution in case of double tag
- It matches the central $\gamma\gamma$ mass for signal. Can match as well for pile-up backgrounds as a statistical fluctuation
- **Double tag probability** from pile-up protons on the forward detectors (no missing mass requirement): 32% ($\mu = 50$) 66% ($\mu = 100$) 93% ($\mu = 200$)

Possible extra-cut: proton timing requirement

- Proton timing will be measured by forward detectors
 - 10 ps resolution assumed → proton vertex constrained within 2.1 milimeters
 - Requirement of 1 converted $\gamma \rightarrow <$ 1 mm resolution on the γ vertex
 - Resolution on the vertex position driven by forward timing detectors
- additional background rejection factor of 40 at $\mu=50$
- No need to use for this study, **robustness of the analysis**
- can be used for unknown backgrounds (beam-induced)

Forward timing detectors: inefficiencies due to pile-up protons

Inefficiencies - 2mm bar detector										
Bar	1	2	3	4	5	6	7	8	9	10
$\mu = 50$	0.129	0.085	0.067	0.057	0.049	0.046	0.043	0.040	0.036	0.011
$\mu = 100$	0.185	0.122	0.097	0.082	0.071	0.066	0.062	0.057	0.051	0.016

M. Saimpert. Search for new states of matter wih the ATLAS experiment at the LHC, Master Thesis MINES ParisTech (2013)

Event selection: summary

Kinematic cuts

- $p_{T1}^{\gamma} > 200 \text{ GeV}, p_{T2}^{\gamma} > 100 \text{ GeV}$
- $m_{\gamma\gamma} > 600 \text{ GeV}$

- $\frac{p_{12}}{p_{11}} > 0.95$
- $|\Delta \Phi| > \pi 0.01$

- $m_{pp}^{miss} = m_{\gamma\gamma} \pm 3\%$
- $|y_{\gamma\gamma} y_{DD}| < 0.03$ with $y_{pp} = (0.5 * ln(\frac{\xi_1}{\xi_0}))$
- 3 Possible proton timing measurement with forward detectors (Not used)

SM QED exclusive $\gamma\gamma$ production

- Different loop contributions: fermions (quarks, leptons), vectors (W)
- W loop contribution and massive fermions added to the process in FPMC rev.913 (negligible at low mass but not at high mass, usually not included in the MCs)
- Interferences SM/Exotics added for the full amplitude calculation of new heavy charged particles

The BSM amplitudes

- Loops of spin 0,1/2, 1 new electric particles contribute to 4γ . Because all vertices are fixed by gauge invariance, the NP contributions depend only on spin, mass and
- For example in the effective theory limit : $\zeta_i^{\gamma} = \alpha_{em}^2 Q^4 m^{-4} N c_{i,s}$

$$c_{1,s} = \begin{cases} \frac{1}{288} & s = 0 \\ -\frac{1}{36} & s = \frac{1}{2} \\ -\frac{5}{32} & s = 1 \end{cases}, \quad c_{2,s} = \begin{cases} \frac{1}{360} & s = 0 \\ \frac{7}{90} & s = \frac{1}{2} \\ \frac{27}{40} & s = 1 \end{cases}$$
 Scalar loops are smaller!

- Full amplitudes for fermions and vectors are now implemented in FPMC.
- Amplitudes get enhanced near the threshold

$\gamma\gamma\gamma\gamma$ full amplitude calculation (S. Fichet)

The SM background

- All electric particles of the SM contribute : leptons, quarks and W bosons
- The imaginary part of certain W helicity amplitudes grows with the energy, while the fermion amplitudes are finite. Background is dominated by the W loop
- When the new particle is real, it interfers with the W loop.
 - On-shell NP signal enhanced by SM interference
- All SM background amplitudes are implemented in FPMC (+ swiches to separately turn off them)
- One can check that SM fermions contributions are negligible.
 - Keeping only the W loop provides a huge gain of CPU time!

Full amplitude computation for generic heavy charged fermions/vectors contributions (preliminary)

Link full amplitude - effective field theory

$$\zeta_i^\gamma = c_i^s Q_{
m eff}^4 m^{-4} \alpha_{
m em}^2$$
, $c_i \simeq$ 0.01 (0.1) for fermions (vectors)

Typical sensitivity with the full amplitude calculation

M = 800 GeV, $Q_{eff} > 7$ (4) for fermions (vectors)

- Gives a coupling of \simeq **3.10**⁻¹⁵ in terms of ζ_i
- Same order of magnitude than the sensitivity we had using the effective field theory → successful cross-check of the method

Conclusion: additional information

- Effective field theory: 5σ discovery with less luminosity (1 fb⁻¹, 10 fb⁻¹, 50 fb⁻¹): $7 \cdot 10^{-13}$, $2 \cdot 10^{-13}$, $9 \cdot 10^{-14}$ GeV⁻⁴
- $\sim \gamma \gamma \gamma \gamma$ paper: S. Fichet et al Phys. Rev. D **89** (2014)
- More detailed paper including the full amplitude calculations for loop contributions and SM exclusive production update in preparation