

- 1) A Model for Soft High-Energy Scattering: Tensor Pomeron and Vector Odderon.
 - C.Ewerz, M.Maniatis, O.Nachtmann, arXiv:1309.3478, Annals Phys. 342 (2014) 31-77
- 2) Photoproduction of $\pi+\pi-$ pairs: Development of a MC-generator based on 1) paper in preparation
- 3) First results of 2)

Related work:

- P. Lebiedowicz, O. Nachtmann, A. Szczurek, arXiv:1309.3913, Annals Phys. 344 (2014) 301
- P. Lebiedowicz, talk at DIS 2014

Examples for soft reactions:

- elastic scattering:
 - $p+p \rightarrow p+p$
 - $\bar{p} + p \rightarrow \bar{p} + p$
 - $\pi + p \rightarrow \pi + p$
- photoproduction:
 - $\bullet \quad \gamma + p \to \rho^0 + p$
 - $\gamma + \gamma \rightarrow \rho^0 + \rho^0$
- central production:
 - $p+p \rightarrow p+meson+p$

- For $\sqrt{s} \to \infty$, but $|t| \le 1$ GeV² this is neither a pure short distance regime nor a pure long distance phenomenon. \to difficult to treat in QCD.
- > Physics of exchanges, Regge regime.
- Goal of 1): Formulate rules in terms of effective propagators and vertices for C=1 and C=-1 exchanges compatible with effective QFT.

Combination of QFT with Regge theory leads to a dilemma

Example: p+p and $\bar{p}+p$ scattering in Regge approach

(Donnachie-Landshoff pomeron ansatz)

$$\langle p(p'_{1}), p(p'_{2}) | \mathcal{T} | p(p_{1}), p(p_{2}) \rangle \Big|_{\mathbb{P}} = i \left[3\beta_{\mathbb{P}NN} F_{1}(t) \right]^{2} (-is\alpha'_{\mathbb{P}})^{\alpha_{\mathbb{P}}(t)-1}$$

$$\times \bar{u}(p'_{1}) \gamma^{\mu} u(p_{1}) \bar{u}(p'_{2}) \gamma_{\mu} u(p_{2}) ,$$

$$\langle \bar{p}(p'_{1}), p(p'_{2}) | \mathcal{T} | \bar{p}(p_{1}), p(p_{2}) \rangle \Big|_{\mathbb{P}} = i \left[3\beta_{\mathbb{P}NN} F_{1}(t) \right]^{2} (-is\alpha'_{\mathbb{P}})^{\alpha_{\mathbb{P}}(t)-1}$$

$$\times \bar{v}(p_{1}) \gamma^{\mu} v(p'_{1}) \bar{u}(p'_{2}) \gamma_{\mu} u(p_{2}) ,$$

- The $\gamma^{\mu} \otimes \gamma_{\mu}$ structure suggests to consider the pomeron as an effective vector exchange.
- A QFT vector will couple to the proton and antiproton with opposite sign.
- Pollemma IP couples equally to p and \bar{p} .

Pomeron as an effective tensor exchange

- A way out off the dilemma:
- Write pomeron exchange as an effective tensor exchange.
- A tensor like for gravity gives the same sign for the coupling of particles and antiparticles.
- Example:

- Is this all in contradiction to Donnachie-Landshoff?
- No! The amplitudes are for $s \to \infty$ exactly as for the DL-pomeron.

- Propagators for
 - C=+1 exchanges (IP, f_{2R} , a_{2R}) formulated as rank-two-tensor exchanges.
 - C=-1 exchanges (ω_R , ρ_R , Odderon(?)) as vector exchanges.
- Huge set of vertices respecting QFT rules
 - IP $\rho\rho$, $\gamma\rho$, IPNN, $\rho\pi^{+}\pi^{-}$, ...
 - Form factors are taken into account and are explicitly given for hadronic vertices (hadrons are extended objects).
- Inclusion of photons using the vector dominance model, VDM
- Set of all parameters with starting values; where possible estimated from data.
- > Everything is given to apply the model to a concrete calculation of amplitudes.

Photoproduction of $\pi^+\pi^-$ pairs: Development of a MC-generator

• Aim is to construct a Monte Carlo event generator for the reaction

$$\gamma(q) + p(p) \longrightarrow \pi^{+}(k_1) + \pi^{-}(k_2) + p(p')$$

at typical HERA energies ($W_{\gamma p} \approx 10 \text{ GeV}$) or above.

> Draw all Feynman diagrams that should be included, and apply the model. One ends up with the standard formula:

$$\mathrm{d}\sigma^{\gamma p} = \underbrace{\left(\frac{1}{4}\frac{1}{2(s-m_p^2)}(\hbar c)^2\right)}_{\mathrm{Norm}}\underbrace{\left((-1)\sum_{\mathfrak{s}',\,\mathfrak{s}}\mathcal{M}_{\mu,\,\mathfrak{s}',\,\mathfrak{s}}^*\mathcal{M}_{\mathfrak{s}',\,\mathfrak{s}}^{\mu}\right)}_{\mathrm{Sum over matrix elements squared}}\underbrace{\left(\frac{1}{(2\pi)^5}\frac{d^3k_1}{2k_1^0}\frac{d^3k_2}{2k_2^0}\frac{d^3p'}{2p'^0}\delta^{(4)}(k_1+k_2+p'-p-q)\right)}_{=\mathrm{d}\phi_3,\,\mathrm{Phase Space}}$$

- Find / write computer programs
 - to calculate the spin sum.
 - to integrate the phase-space $2 \rightarrow 3$ phase space.
 - to obtain differential cross sections.

• Resonant ρ , ω , ρ' production via exchanges of pomeron (IP) and reggeons (f_{2R}, a_{2R}) .

- Resonant f₂ production via exchanges of
 - reggeons (ρ_R, ω_R)
 - photons (Primakoff-Effect)
 - Odderon (?)

- Non-resonant $\pi^+\pi^-$ production via exchanges of
 - pomeron (IP) and reggeon (f_{2R})

Remark: The inclusion of these diagrams is a gauge invariant version of the Drell-Söding mechanism. The non-resonant pomeron and reggeons interfere with resonant ρ production (1st diagram) \rightarrow skewing of ρ -line shape.

• Results

Data: DESY 97-237

$$W_{\gamma p} = 50-100 \text{ GeV}$$

$$W_{\gamma p} = 30 \text{ GeV}$$

Data figure: taken from DESY 97-237

Data figure: taken from DESY 97-237

Summary and Conclusions

- Ewerz-Maniatis-Nachtmann model: formulation of a Regge-type model respecting the rules of QFT to describe high-energy soft reactions:
 - C=+1 exchanges IP, f_{2R} , a_{2R} represented as tensors.
 - C=-1 exchanges ω_R , ρ_R , Odderon(?) represented as vectors.
 - List of vertices, propagators and parameters given.
- New MC generator for the reaction $\gamma p \rightarrow \pi^+\pi^- p$
 - Preliminary comparisons with data look fine. More work is needed to see if the model describes the data in detail, and to optimize the model parameters.
 - Includes interference effects (Drell-Söding mechanism, ω-ρ interference)
 - Different $m_{\pi\pi}$ and t behavior for different included processes.

- 1) Calculation of the spin sum:
 - We have two (partially) independent implementations (convenient for debugging):
 - i. Algebraic calculations with mathematica package feyncalc (http://feyncalc.org/). Compact result as a function of Mandelstam-variables and 2 decay-angles, exported to fast C++ code.
 - ii. Direct calculation of algebraic expressions in C++ program, using ltensor package (code.google.com/p/ltensor/). Allows to use Einstein's sum-convention in C++.
- 2) Phase-space $2 \rightarrow 3$ phase space and integration.
 - 2 \rightarrow 3 phase space written as a function of t, $m_{\pi\pi}$, 3 angles. Comment: RAMBO turned out to be inefficient for this purpose.
 - Efficient MC-integration of d σ using dedicated pre-sampling functions in t and m_{$\pi\pi$}.
- 3) Combination of 1) and 2) with some more functions (related to the form-factors and propagators) to one C++ program. Result:
 - weighted events (4-vectors of all particles) saved in a RooT-tree
 - Full control over program behavior via steerings (→ Matrix elements, Parameters, etc.)
- 4) Differential cross sections (eventually in a complicated phase-space) can be obtained from that using RooT.