

Introduction and results of the LHCf experiment

Takashi SAKO (KMI/STEL, Nagoya University) for the LHCf collaboration

The LHCf Collaboration

*,**Y.Itow, *K.Kawade, *Y.Makino, *K.Masuda, *Y.Matsubara, *E.Matsubayashi, **H.Menjo, *Y.Muraki, *,**T.Sako, *N.Sakurai, *Y.Sugiura, *Q.D.Zhou

> *Solar-Terrestrial Environment Laboratory, Nagoya University, Japan **Kobayashi-Maskawa Institute, Nagoya University, Japan ***Graduate School of Science, Nagoya University, Japan

K.Yoshida Shibaura Institute of Technology, Japan **K.Kasahara, Y.Shimizu, T.Suzuki, S.Torii**

Waseda University, Japan

Kanagawa University, Japan

M.HaguenauerEcole Polytechnique, FranceW.C.TurnerLBNL, Berkeley, USAO.Adriani, E.Berti, L.Bonechi, M.Bongi, G.Castellini, R.D'Alessandro,M.Delprete, M.Grandi, G.Mitsuka, P.Papini, S.Ricciarini, A.Tiberio

A.Tricomi J.Velasco, A.Faus A-L.Perrot

T.Tamura

INFN, Univ. di Firenze, Italy INFN, Univ. di Catania, Italy IFIC, Centro Mixto CSIC-UVEG, Spain CERN, Switzerland

CR physics and Collider energy

D'Enterria et al., APP, 35,98-113, 2011

- Soft interaction (non-perturbative QCD) dominates
- Various phenomenological models are proposed (keywords: diffraction, Regge theory, multi-Pomeron interaction, Glauber theory,...)
- Experimental inputs are important
- LHC gives the best opportunity

If large k

(π⁰s carry more energy) rapid development If small k

(baryons carry more energy) deep penetrating

2^{ry} particle flow at colliders

multiplicity and energy flux at LHC 14TeV p-p collisions

✓ LHCf covers the peak of energy flow
✓ √s=14 TeV pp collision corresponds to E_{CR}=10¹⁷eV

The LHC forward experiment

- ✓ All charged particles are swept by dipole magnet
- ✓ Neutral particles (photons and neutrons) arrive at LHCf
- ✓ η >8.4 (to infinity) is covered

LHCf Detectors

- ✓ Imaging sampling shower calorimeters
- ✓ Two calorimeter towers in each of Arm1 and Arm2
- ✓ Each tower has 44 r.l. of Tungsten,16 sampling scintillator and 4 position sensitive layers

Detector performance

LHCf Status

✓ Done

- 0.9, 2.76, 7 TeV pp collision, 5 TeV pPb collision data taking finished
- Photon spectra at 0.9 and 7TeV <u>published</u>
- π^0 spectra at 7 TeV <u>published</u>
- Performance at 0.9 and 7TeV <u>published</u>
- π^0 and UPC spectra at 5TeV pPb $\underline{accepted}$ by PRC (public on arXiv and CDS)
- \checkmark On going
 - Neutron spectra at 7TeV (to be published soon)
 - Rad-hard detector upgrade for 13 TeV pp
- ✓ Plan
 - 13TeV pp collision in 2015
 - 0.5TeV pp at RHIC (proposal submitted)
 - Discussions for light ion collision at RHIC and LHC

Publication Summary

	Photon (EM shower)	Neutron (hadron shower)	π (EM shower)
Test beam at SPS	NIM. A 671, 129–136 (2012)	JINST, 9, P03016 (2014)	
p-p at 900GeV	Phys. Lett. B 715, 298-303 (2012)		
p-p at 7TeV	Phys. Lett. B 703, 128–134 (2011)	to be submitted soon	Phys. Rev. D 86, 092001 (2012)
p-p at 2.76TeV			PRC in press
p-Pb at 5.02TeV			[nucl-ex](2014)

LHCf 7TeV pp photon

Photon spectra @ 7TeV (Data vs. Models)

DPMJET 3.04 QGSJET II-03 SIBYLL 2.1 EPOS 1.99 PYTHIA 8.145

π^0 analysis

LHCf 7TeV pp π^0

- π⁰ candidate
- 599GeV & 419GeV photons in 25mm and 32mm tower, respectively
- $M = \theta v(E_1 x E_2)$

5.02TeV pPb collision π^0 at p-remnant side

LHCf p-p at 5.02TeV (x5)

DPMJET 3.04

5.02TeV pPb collision π^0 at p-remnant side

– LHCf

DPMJET 3.04

QGSJET II-03

RHIC 200GeV d-Au, STAR Collaboration Adams et al., PRL 97 (2006) 152302.

18

RHIC 200GeV d-Au, STAR Collaboration Adams et al., PRL 97 (2006) 152302.

19

7TeV pp neutron

✓ Sys-error to be updated

- ✓ Energy resolution 40%, position resolution 0.1-1 mm are unfolded
- ✓ Detection efficiency, PID efficiency, purity are corrected

Origin of 0 degree neutrons

Ostapchenko, QGSJET II

Pierog, EPOS

Next Steps...

- ✓ More analyses
 - analysis of full acceptance
 - correlation with ATLAS (diffractive events)
 - √s dependence
 - reduce systematic errors
 - impact on CR air showers
- ✓ 13TeV p-p run in 2015
 - dedicated run in April-May 2015
 - common trigger with ATLAS (LHCf triggers ATLAS) will help classification of events into MB, diffractive, etc...
- ✓ RHICf for 510GeV p-p run
 - identical $x_{F}-p_{T}$ coverage to LHC 7TeV run
 - proposal presented last week at BNL
- ✓ p-O and O-O runs at LHC?
 - direct test of CR-atmosphere interaction
 - technically feasible by LHC

Summary

- ✓ LHCf was motivated to understand the fundamental hadronic processes in the CR air shower development, where soft processes relevant to low-X WS dominate
- ✓ LHCf has published spectra of forward neutral particles using LHC 0.9, 2.76, 7TeV p-p and 5.02TeV p-Pb collision data
- No surprise so far, but LHCf results strongly constrain the models
 - Not only LHCf but many other measurements at LHC give generally same conclusion
 - Note LHC 7TeV p-p measurements are first tests above the knee energy, E_{CR}=4×10¹⁵eV
- ✓ LHC 13TeV p-p run is scheduled in early 2015
- ✓ Together with a possible RHIC 510GeV run, a wide coverage in √s can help extrapolation of models beyond the LHC energy, E_{CR} >10¹⁷eV

Backup

Photon spectra @ 900GeV

25

- ✓ Comparison in the same p_T range (pT<0.13x_F GeV/c)
- ✓ Normalized by # of events $X_F > 0.1$
- ✓ Statistical error only
- ✓ Comparison with 2.76TeV, 13TeV (and RHIC 500GeV) are planned 26

π^0 event analysis in p-Pb collisions

Momentum distribution of the UPC induced secondary particles is estimated as

- 1. energy distribution of virtual photons is estimated by the Weizsacker Williams approximation. proton
- 2. photon-proton collisions are simulated by the SOHIA model (E_{γ} > pion threshold).
- 3. produced mesons and baryons by γ-p collisions are boosted along the proton beam.

Dominant channel to forward π^0 is $\gamma + p \rightarrow \Delta(1232) \rightarrow p + \pi^0$ About half of the observed π^0 may originate in UPC, another half is from soft-QCD.

Confirmation of x_F scaling

RHICf coverage

Installing the LHCf Arm2 detector at RHIC (PHENIX IP)

- Detector is moved up-down; wide p_T coverage and to avoid ZDC interference
- $x_{F}-p_{T}$ coverage identical to LHC 7TeV collision
- Wider coverage and higher resolution in p_T than PHENIX ZDC+SMD measurements (joint analysis between ZDC and RHICf)

Scaling violation and Air shower (on going study)

Recent progress on UHECR observation

Observation of UHECRs

Uncertainty in hadronic interaction

AS Interpretation depends on the hadronic interaction model₃₃

AS Interpretation depends on the hadronic interaction model

Problems in the CR data interpretation

Interpretation of AS observations needs help of MC simulation – hadronic interaction model

- => model-originated uncertainty or even discrepancy
- ✓ Energy
 - $E_{SD} > E_{FD}$: discrepancy
 - missing energy (μ, ν) in FD : uncertainty
- ✓ Mass
 - Mass vs. X_{max} in FD: uncertainty
 - Mass vs. e/μ or μ excess in SD : discrepancy

It is evident that our knowledge of hadronic interaction relevant to CR is missing something