Forward jets using new tools for high energy factorization（and beyond）

Piotr Kotko
ピヨートル コトコ

Institute of Nuclear Physics（Cracow）

supported by
LIDER／02／35／L－2／10／NCBiR／2011

in collaboration with
A．van Hameren，K．Kutak，
C．Marquet，S．Sapeta

Outline

(1) new results for forward jets within high energy factorization were presented \Rightarrow see Krzysztof's and Cyrille's talks
(2) this talk \Rightarrow the Monte Carlo tools we have used
(3) further developments in off-shell matrix elements evaluation \Rightarrow a new tool for analytic, automatized calculation of tree-level matrix elements of Wilson lines

High Energy Factorization

"Hybrid" high energy factorization (HEF) formula relevant for forward jets
[e.g. M. Deak, F. Hautmann, H. Jung, K. Kutak, JHEP 0909 (2009) 121]

$$
k_{A}=x_{A} p_{A}+k_{T A}, k_{A}^{2}=k_{T A}^{2}, \quad k_{B}=x_{B} p_{B}, k_{B}^{2}=0, \quad x_{A} \ll x_{B}
$$

$d \sigma_{A B \rightarrow X}=\int \frac{d^{2} k_{T A}}{\pi} \int \frac{d x_{A}}{x_{A}} \int d x_{B} \mathcal{F}\left(x_{A}, k_{T A}, \mu\right) f_{b / B}\left(x_{B}, \mu\right) d \sigma_{g^{*} b \rightarrow X}\left(x_{A}, x_{B}, k_{T A}, \mu\right)$

- collinear PDFs $f_{b / B}\left(x_{B}, \mu\right)$
- unintegrated gluon density (UGD) $\mathcal{F}\left(x_{A}, k_{T A}, \mu\right)$ the hard scale dependence is important for some observables
- off-shell gauge invariant tree-level matrix elements reside in $d \sigma_{g^{*} b \rightarrow X}$ subleading effects are accounted for in the UGD
\star In general k_{T}-factorization does not hold for hadron-hadron collisions
\Rightarrow see the talks of Cyrille and Anna

Recent results using HEF and various UGDs

- forward-central dijets in a configuration measured by CMS (Krzysztof's talk)
[A. van Hameren, P.K., K. Kutak, S. Sapeta, arXiv:1404.6204]
- KS UGD (unified BFKL+DGLAP with nonlinear BK term; fitted to HERA data by K. Kutak and S. Sapeta)
[K. Kutak, A. Stasto, Eur.Phys.J. C41, 343 (2005)] [K. Kutak, S. Sapeta, Phys.Rev. D86, 094043 (2012)]
- KS UGD supplemented with the Sudakov ressumation effects
- KMR UGD
[M. Kimber, A. D. Martin, and M. Ryskin, Phys.Rev. D63, 114027 (2001)]
- forward-forward dijets (Cyrille's talk)
[A. van Hameren, P.K., K. Kutak, C. Marquet, S. Sapeta, Phys.Rev. D89, 094014 (2014)] study of saturation effects in $p+p$ and $p+P b$ with $K S$ UGD and rcBK (BK equation in the momentum space with running coupling)
[I. Balitsky, G.A. Chirilli, Phys.Rev. D77, 014019 (2008)]
[J. L. Albacete, N. Armesto, J.G. Milhano, P. Quiroga-Arias, C.A. Salgado, Eur. Phys. J. C 71 (2011) 1705]
- trijets in forward and forward-central configurations
[A. van Hameren, P.K., K. Kutak, Phys.Rev. D88, 094001 (2013)]
- very forward dijets with possible extension of CASTOR (not published; prepared for a yellow report)

The tools for HEF

It is convenient to implement HEF in a Monte Carlo program. The calculations have been carried and cross checked using three independent programs:

- oscars (Off-Shell Currents And Related Stuff)

FORTRAN code by A. van Hameren (not public yet), similar to HELAC; off-shell amplitudes are calculated efficiently using recently developed BCFW recursion for off-shell amplitudes [A. van Hameren, arXiv:1404.7818]

- LxJet

C++ program by P.K., see next slide

- forward

C++ program of S. Sapeta (available upon request), currently for dijets; off-shell MEs taken from [M. Deak, F. Hautmann, H. Jung, K. Kutak, JHEP 0909 (2009) 121]

Another program using k_{T} factorization $\Rightarrow \mathrm{LMZ}$ for photoproduction [A.V. Lipatov, M.A. Malyshev, N.P. Zotov] (see the talk of A. Iudin)

LxJet Monte Carlo program

- uses FOAM - cellural Monte Carlo generator
[S. Jadach, Comput.Phys.Commun. 152 (2003)]
- uses ROOT (easy histograming, allows e.g. to save events and reuse them without recalculating, etc.)
- operates on helicity amplitudes level (implemented spinor algebra)
- weighet and unweighted events

Gauge invariant off-shell matrix elements

- helicity amplitudes for $g^{*} g \rightarrow g \ldots g$ calculated from gauge invariant extension of the Berends-Giele recursion
[A. van Hameren, P.K., K. Kutak, JHEP 1212 (2012) 029]
- implementation of analytic formulae for $g^{*} a \rightarrow X, a=g, q, \#\{X\}=2,3$ calculated using OGIME (Off-shell Gauge Invariant Matrix Elements)

Versions

- v1.1, ready to use for dijets and trijets with KS linear UGD
[http://annapurna.ifj.edu.pl/~pkotko/LxJet.html]
- v1.2 (to appear), accounts for hard scale dependence in UGD; distributed with a plugin to make "the Sudakov resummation"

Example LxJet application

- new mesurement of CMS: decorrelations of forward-central high p_{T} jets [CMS-PAS-FSQ-12-008]
- HEF factorization underestimates the number of events with unbalanced p_{T} of the order of the hard scale
\Rightarrow this is cured by introducing hard scale dependence via "the Sudakov resummation" [A. van Hameren, P.K., K. Kutak, S. Sapeta, arXiv:1404.6204]

Sudakov resummation model vs KMR

OGIME - Off-shell Gauge Invariant Matrix Elements

Original idea: design a tool for analytic, automatic calculation of tree-level off-shell amplitudes with one off-shell leg (to be used in HEF, e.g. in LxJet)

- it expanded to a more general tool: several off-shell legs with arbitrary "polarizations" of the off-shell gluons
\Rightarrow it enables to use them outside small \times physics
- written in FORM - an open source symbolic manipulation system by
J. Vermaseren (very fast, can deal with plenty of terms, but "low level")
- method: matrix elements of Wilson lines (see next slides)
- automatic Wick contractions, momentum conservation, simplification, etc.
- limitations: analytic results already for 6 gauge fields are huge

Versions

- v1.2, only gluons [http://annapurna.ifj.edu.pl/~pkotko/LxJet.html]
- v1.3, quarks added (not public yet)
- v2.0, electroweak interactions added, under development

Off-shell amplitudes and Wilson lines

Off-shell gauge invariant amplitude $\tilde{\mathcal{M}}_{e_{1} \ldots e_{n}}\left(k_{1}, \ldots, k_{n} ; X\right)$ for

$$
g^{*}\left(k_{1}, e_{1}\right) \ldots g^{*}\left(k_{n}, e_{n}\right) \rightarrow X
$$

where k_{i}, e_{i} are momentum and "polarization" vector of an off-shell gluon can be defined as [P.K. arXiv:1403.4824, accepted to JHEP]

$$
\begin{aligned}
\langle 0| \Re_{e_{1}}^{c_{1}}\left(k_{1}\right) \ldots \Re_{e_{n}}^{c_{n}}\left(k_{n}\right)|X\rangle \stackrel{*}{=} \delta(& \left.k_{1} \cdot e_{1}\right) \ldots \delta\left(k_{n} \cdot e_{n}\right) \\
& \delta^{4}\left(k_{1}+\ldots+k_{n}-X\right) \tilde{\mathcal{M}}_{e_{1} \ldots e_{n}}\left(k_{1}, \ldots, k_{n} ; X\right)
\end{aligned}
$$

where (almost-)infinite (almost-)straight Wilson lines are defined as

$$
\Re_{e_{i}}^{c_{i}}\left(k_{i}\right)=\int d^{4} y e^{i y \cdot k_{i}} \operatorname{Tr}\left\{\frac{1}{\pi g} t^{c_{i}} \mathcal{P} \exp \left[i g \int_{-\infty}^{\infty} d s \frac{d z_{i \mu}(s)}{d s} A_{b}^{\mu}(z) t^{b}\right]\right\}
$$

where t^{a} are color generators and the path is parametrized as

$$
z_{i}^{\mu}(s)=y^{\mu}+\frac{2}{\epsilon} \tanh \left(\frac{\epsilon S}{2}\right) e_{i}^{\mu}, \quad s \in(-\infty, \infty)
$$

In the matrix element definition the limit $\epsilon \rightarrow 0$ is assumed.

- regularization with hiperbolic paths \Rightarrow formal derivation of generalized functions
- "polarization" vectors are arbitrary \Rightarrow application outside small \times physics

Example

Consider example: $g^{*}\left(k_{A}, e_{A}\right) g^{*}\left(k_{C}, e_{C}\right) \rightarrow g^{*}\left(k_{B}, e_{B}\right) g(p)$
There are 16 color-ordered (for simplicity) diagrams:

For $e_{A}, e_{B}, e_{C} \in\left\{n_{+}, n_{-}\right\}$some of the diagrams vanish and the result is consistent with RRRg Lipatov's vertex
[M.A. Braun, M.Yu. Salykin, S.S. Pozdnyakov, M.I. Vyazovsky, Eur.Phys.J. C72 (2012) 2223]

Gauge invariant decompositions

Our off-shell amplitudes are defined for any "polarization vectors". This allows to use them outside high-energy physics.

For example, consider a standard color-ordered four gluon amplitude

$$
\begin{aligned}
\mathcal{M}^{(1234)}= & J_{\mu}^{(12)} \frac{i g^{\mu \nu}}{k_{12}^{2}} J_{v}^{(34)} \\
& +J_{\mu}^{(41)} \frac{i i^{\mu \nu}}{k_{14}^{2}} J_{v}^{(23)}+i V_{4}^{(1234)}
\end{aligned}
$$

It is possible to write this amplitude in a manifestly gauge invariant way

$$
\mathcal{M}^{(1,2,3,4)}=i\left(k_{12}^{2} \tilde{\jmath}^{(1,2)} \cdot \tilde{\jmath}^{(3,4)}+k_{14}^{2} \tilde{\jmath}^{(4,1)} \cdot \tilde{\jmath}^{(2,3)}+\tilde{V}_{4}^{(1,2,3,4)}\right)
$$

where

$$
\tilde{\jmath}^{(a b)} \cdot \tilde{\mathcal{J}}^{(c d)}=\sum_{i=0}^{2} \tilde{J}_{i}^{(a b)} \tilde{J}_{i}^{(c d)} d_{i}, \quad \tilde{J}_{i}\left(\varepsilon_{1}, \varepsilon_{2} ; k_{12}\right) \stackrel{*}{=}\left\langle k_{1}, \varepsilon_{1} ; k_{2}, \varepsilon_{2}\right| \mathcal{R}_{\epsilon_{i}}\left(k_{12}\right)|0\rangle
$$

and $k \cdot \epsilon_{i}(k)=0, \epsilon_{i}(k) \cdot \epsilon_{j}(k)=d_{i}(k) \delta_{i j}, d_{0}(k)= \pm 1, d_{1}(k)=d_{2}(k)=-1$, $\sum_{i=0}^{2} \epsilon_{i}^{\nu}(k) \epsilon_{i}^{\mu}(k) d_{i}(k)=g^{\mu \nu}-k^{\mu} k^{\nu} / k^{2}$.

Summary

- new results for forward jets at the LHC within High Energy factorization are available, e.g.:
- forward-central jets \Rightarrow reasonable agreement with the data is encouraging (see Krzysztof's talk)
- forward-forward dijets as saturation probes (see Cyrille's talk)
- convenient calculations require Monte Carlo tools \Rightarrow here LxJet has been presented
- off-shell gauge invariant amplitudes can be calculated using matrix elements of Wilson lines \Rightarrow a practical analytic realization is OGIME program

Backup

Off-shell Multigluon Amplitude

Color ordered result for $g^{*} g \rightarrow g \ldots g$

$$
\begin{aligned}
\widetilde{\mathcal{A}}\left(\varepsilon_{1}, \ldots, \varepsilon_{N}\right)=-\left|\vec{k}_{T A}\right| & {\left[k_{T A} \cdot J\left(\varepsilon_{1}, \ldots, \varepsilon_{N}\right)\right.} \\
& \left.+\left(\frac{-g}{\sqrt{2}}\right)^{N} \frac{\varepsilon_{1} \cdot p_{A} \ldots \varepsilon_{N} \cdot p_{A}}{k_{1} \cdot p_{A}\left(k_{1}-k_{2}\right) \cdot p_{A} \ldots\left(k_{1}-\ldots-k_{N-1}\right) \cdot p_{A}}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
J^{\mu}\left(\varepsilon_{1}, \ldots, \varepsilon_{N}\right)= & \frac{-i}{k_{1 N}^{2}}\left(g_{v}^{\mu}-\frac{k_{1 N}^{\mu} p_{A, v}+k_{1 N v} p_{A}^{\mu}}{k_{1 N} \cdot p_{A}}\right) \\
& \left\{\begin{array}{l}
\sum_{i=1}^{N-1} V_{3}^{v \alpha \beta}\left(k_{1 i}, k_{(i+1) N}\right) J_{\alpha}\left(\varepsilon_{1}, \ldots, \varepsilon_{i}\right) J_{\beta}\left(\varepsilon_{i+1}, \ldots, \varepsilon_{N}\right)
\end{array}\right. \\
& \left.+\sum_{i=1}^{N-2} \sum_{j=i+1}^{N-1} V_{4}^{v \alpha \beta \gamma} J_{\alpha}\left(\varepsilon_{1}, \ldots, \varepsilon_{i}\right) J_{\beta}\left(\varepsilon_{i+1}, \ldots, \varepsilon_{j}\right) J_{\gamma}\left(\varepsilon_{j+1}, \ldots, \varepsilon_{N}\right)\right\}
\end{aligned}
$$

where $k_{i j}=k_{i}+k_{i+1}+\ldots+k_{j}, V_{3}$ and V_{4} are three and four-gluon vertices.
The red piece was obtained using the Slavnov-Taylor identities and correspond to bremsstrahlung from the straight infinite Wilson line along p_{A} (in axial gauge).

[^0]
[^0]: ${ }^{1}$ A. van Hameren, P. Kotko, K. Kutak, JHEP 1212 (2012) 029

